A new superweapon in the fight against cancer Paula Hammond

Cancer affects all of us –

especially the ones that come
back over and over again,

the highly invasive
and drug-resistant ones,

the ones that defy medical treatment,

even when we throw our best drugs at them.

Engineering at the molecular level,

working at the smallest of scales,

can provide exciting new ways

to fight the most aggressive
forms of cancer.

Cancer is a very clever disease.

There are some forms of cancer,

which, fortunately, we’ve learned
how to address relatively well

with known and established
drugs and surgery.

But there are some forms of cancer

that don’t respond to these approaches,

and the tumor survives or comes back,

even after an onslaught of drugs.

We can think of these
very aggressive forms of cancer

as kind of supervillains in a comic book.

They’re clever, they’re adaptable,

and they’re very good at staying alive.

And, like most supervillains these days,

their superpowers come
from a genetic mutation.

The genes that are modified
inside these tumor cells

can enable and encode for new
and unimagined modes of survival,

allowing the cancer cell to live through

even our best chemotherapy treatments.

One example is a trick
in which a gene allows a cell,

even as the drug approaches the cell,

to push the drug out,

before the drug can have any effect.

Imagine – the cell effectively
spits out the drug.

This is just one example
of the many genetic tricks

in the bag of our supervillain, cancer.

All due to mutant genes.

So, we have a supervillain
with incredible superpowers.

And we need a new and powerful
mode of attack.

Actually, we can turn off a gene.

The key is a set of molecules
known as siRNA.

siRNA are short sequences of genetic code

that guide a cell to block a certain gene.

Each siRNA molecule
can turn off a specific gene

inside the cell.

For many years since its discovery,

scientists have been very excited

about how we can apply
these gene blockers in medicine.

But, there is a problem.

siRNA works well inside the cell.

But if it gets exposed to the enzymes

that reside in our bloodstream
or our tissues,

it degrades within seconds.

It has to be packaged, protected
through its journey through the body

on its way to the final target
inside the cancer cell.

So, here’s our strategy.

First, we’ll dose the cancer cell
with siRNA, the gene blocker,

and silence those survival genes,

and then we’ll whop it with a chemo drug.

But how do we carry that out?

Using molecular engineering,

we can actually design a superweapon

that can travel through the bloodstream.

It has to be tiny enough
to get through the bloodstream,

it’s got to be small enough
to penetrate the tumor tissue,

and it’s got to be tiny enough
to be taken up inside the cancer cell.

To do this job well,

it has to be about one one-hundredth
the size of a human hair.

Let’s take a closer look
at how we can build this nanoparticle.

First, let’s start
with the nanoparticle core.

It’s a tiny capsule that contains
the chemotherapy drug.

This is the poison that will
actually end the tumor cell’s life.

Around this core, we’ll wrap a very thin,

nanometers-thin blanket of siRNA.

This is our gene blocker.

Because siRNA is strongly
negatively charged,

we can protect it

with a nice, protective layer
of positively charged polymer.

The two oppositely charged
molecules stick together

through charge attraction,

and that provides us
with a protective layer

that prevents the siRNA
from degrading in the bloodstream.

We’re almost done.

(Laughter)

But there is one more big obstacle
we have to think about.

In fact, it may be the biggest
obstacle of all.

How do we deploy this superweapon?

I mean, every good weapon
needs to be targeted,

we have to target this superweapon
to the supervillain cells

that reside in the tumor.

But our bodies have a natural
immune-defense system:

cells that reside in the bloodstream

and pick out things that don’t belong,

so that it can destroy or eliminate them.

And guess what? Our nanoparticle
is considered a foreign object.

We have to sneak our nanoparticle
past the tumor defense system.

We have to get it past this mechanism
of getting rid of the foreign object

by disguising it.

So we add one more
negatively charged layer

around this nanoparticle,

which serves two purposes.

First, this outer layer is one
of the naturally charged,

highly hydrated polysaccharides
that resides in our body.

It creates a cloud of water molecules
around the nanoparticle

that gives us an invisibility
cloaking effect.

This invisibility cloak allows
the nanoparticle

to travel through the bloodstream

long and far enough to reach the tumor,

without getting eliminated by the body.

Second, this layer contains molecules

which bind specifically to our tumor cell.

Once bound, the cancer cell
takes up the nanoparticle,

and now we have our nanoparticle
inside the cancer cell

and ready to deploy.

Alright! I feel the same way. Let’s go!

(Applause)

The siRNA is deployed first.

It acts for hours,

giving enough time to silence
and block those survival genes.

We have now disabled
those genetic superpowers.

What remains is a cancer cell
with no special defenses.

Then, the chemotherapy drug
comes out of the core

and destroys the tumor cell
cleanly and efficiently.

With sufficient gene blockers,

we can address many
different kinds of mutations,

allowing the chance to sweep out tumors,

without leaving behind any bad guys.

So, how does our strategy work?

We’ve tested these nanostructure
particles in animals

using a highly aggressive form
of triple-negative breast cancer.

This triple-negative breast cancer
exhibits the gene

that spits out cancer drug
as soon as it is delivered.

Usually, doxorubicin – let’s call
it “dox” – is the cancer drug

that is the first line of treatment
for breast cancer.

So, we first treated our animals
with a dox core, dox only.

The tumor slowed their rate of growth,

but they still grew rapidly,

doubling in size
over a period of two weeks.

Then, we tried
our combination superweapon.

A nanolayer particle with siRNA
against the chemo pump,

plus, we have the dox in the core.

And look – we found that not only
did the tumors stop growing,

they actually decreased in size

and were eliminated in some cases.

The tumors were actually regressing.

(Applause)

What’s great about this approach
is that it can be personalized.

We can add many different layers of siRNA

to address different mutations
and tumor defense mechanisms.

And we can put different drugs
into the nanoparticle core.

As doctors learn how to test patients

and understand certain
tumor genetic types,

they can help us determine which patients
can benefit from this strategy

and which gene blockers we can use.

Ovarian cancer strikes
a special chord with me.

It is a very aggressive cancer,

in part because it’s discovered
at very late stages,

when it’s highly advanced

and there are a number
of genetic mutations.

After the first round of chemotherapy,

this cancer comes back
for 75 percent of patients.

And it usually comes back
in a drug-resistant form.

High-grade ovarian cancer

is one of the biggest
supervillains out there.

And we’re now directing our superweapon

toward its defeat.

As a researcher,

I usually don’t get to work with patients.

But I recently met a mother

who is an ovarian cancer survivor,
Mimi, and her daughter, Paige.

I was deeply inspired
by the optimism and strength

that both mother and daughter displayed

and by their story of courage and support.

At this event, we spoke
about the different technologies

directed at cancer.

And Mimi was in tears

as she explained how learning
about these efforts

gives her hope for future generations,

including her own daughter.

This really touched me.

It’s not just about building
really elegant science.

It’s about changing people’s lives.

It’s about understanding
the power of engineering

on the scale of molecules.

I know that as students like Paige
move forward in their careers,

they’ll open new possibilities

in addressing some of the big
health problems in the world –

including ovarian cancer, neurological
disorders, infectious disease –

just as chemical engineering has
found a way to open doors for me,

and has provided a way of engineering

on the tiniest scale,
that of molecules,

to heal on the human scale.

Thank you.

(Applause)

癌症影响着我们所有人——

尤其是那些
反复复发的癌症

,高侵袭性
和耐药性的

癌症,那些抗拒医疗的癌症,

即使我们向他们投掷最好的药物。

分子水平的工程,

在最小的尺度上工作,

可以提供令人兴奋的新方法

来对抗最具侵略性
的癌症。

癌症是一种非常聪明的疾病。

有一些癌症

,幸运的是,我们已经学会了
如何

使用已知和成熟的
药物和手术来相对较好地解决这些癌症。

但是有一些癌症

对这些方法没有反应

即使在药物猛攻之后,肿瘤也会存活或复发。

我们可以将这些
非常具有侵略性的

癌症形式视为漫画书中的超级恶棍。

它们很聪明,适应能力强,

而且非常善于维持生命。

而且,就像当今大多数超级恶棍一样,

他们的超能力
来自基因突变。 在这些肿瘤细胞

内被修饰的基因

可以启用和编码新的
和无法想象的生存模式,

使癌细胞能够

通过我们最好的化疗治疗存活下来。

一个例子是一个技巧
,其中基因允许细胞,

即使药物接近细胞,

在药物产生任何效果之前将药物推出。

想象一下——细胞有效地
吐出药物。

这只是

我们的超级恶棍癌症中的许多遗传技巧的一个例子。

都是因为突变基因。

所以,我们有一个
拥有令人难以置信的超能力的超级反派。

我们需要一种新的、强大
的攻击模式。

实际上,我们可以关闭一个基因。

关键是一组
称为 siRNA 的分子。

siRNA是指导细胞阻断某个基因的遗传密码的短序列

每个 siRNA 分子
都可以关闭细胞内的特定基因

自发现以来的许多年里,

科学家们一直

对我们如何将
这些基因阻断剂应用于医学感到非常兴奋。

但有个问题。

siRNA 在细胞内工作良好。

但如果它接触到

存在于我们血液
或组织中的酶,

它会在几秒钟内降解。

它必须经过包装,
在穿过

身体到达癌细胞内的最终目标
的过程中得到保护。

所以,这是我们的策略。

首先,我们将给
癌细胞注射 siRNA,即基因阻断剂,

并让这些存活基因沉默,

然后我们将使用化疗药物对其进行治疗。

但是我们如何执行呢?

使用分子工程,

我们实际上可以设计

一种可以穿过血液的超级武器。

它必须足够小
才能通过血液,

必须足够小
才能穿透肿瘤组织,

并且必须足够小
才能被癌细胞吸收。

要做好这项工作,


的大小必须约为人类头发的百分之一。

让我们仔细
看看我们如何构建这种纳米粒子。

首先,让我们
从纳米粒子核心开始。

这是一个包含化疗药物的小胶囊

这是
实际上会结束肿瘤细胞生命的毒药。

在这个核心周围,我们将包裹一层非常薄的

纳米级 siRNA。

这是我们的基因阻断剂。

因为 siRNA
带有强负电荷,

我们可以

用一个漂亮
的正电荷聚合物保护层来保护它。

两个带相反电荷的
分子

通过电荷吸引粘在一起

,这为我们
提供了一个保护层

,防止 siRNA
在血流中降解。

我们快完成了。

(笑声)

但是还有一个更大的障碍
我们需要考虑。

事实上,这可能是最大的
障碍。

我们如何部署这种超级武器?

我的意思是,每一种好武器都
需要被瞄准,

我们必须将这种超级武器瞄准肿瘤
中的超级

恶棍细胞。

但是我们的身体有一个天然的
免疫防御系统:

驻留在血液中的细胞会

挑选出不属于的东西,

这样它就可以摧毁或消除它们。

你猜怎么着? 我们的纳米粒子
被认为是异物。

我们必须将我们的纳米粒子偷偷
溜过肿瘤防御系统。

我们必须通过伪装来
摆脱异物的机制

所以我们在这个纳米粒子周围再添加一个
带负电荷的层

它有两个目的。

首先,这个外层是
一种天然带电、

高度水合的多糖
,存在于我们体内。

它在纳米颗粒周围产生一团水分子

,给我们一种隐形
隐形效果。

这种隐形斗篷
允许纳米粒子

在血流中行进

足够长的距离到达肿瘤,

而不会被身体消除。

其次,这一层包含

与我们的肿瘤细胞特异性结合的分子。

一旦结合,癌细胞
就会吸收纳米粒子

,现在我们的纳米粒子
在癌细胞内部

并准备好展开。

好吧! 我有同样的感觉。 我们走吧!

(掌声

) 先部署siRNA。

它作用了几个小时,

给了足够的时间来沉默
和阻止那些生存基因。

我们现在已经禁用了
这些基因超级大国。

剩下的是
没有特殊防御能力的癌细胞。

然后,化疗药物
从核心中出来,干净有效

地破坏肿瘤细胞

有了足够的基因阻断剂,

我们就可以解决许多
不同类型的突变,

从而有机会清除肿瘤,

而不会留下任何坏人。

那么,我们的策略是如何运作的呢?

我们已经

使用高度侵袭性
的三阴性乳腺癌在动物身上测试了这些纳米结构颗粒。

这种三阴性乳腺癌
表现出一种基因


一旦它被递送,就会吐出抗癌药物。

通常,阿霉素——我们
称之为“dox”——是

治疗乳腺癌的一线抗癌药物。

所以,我们首先用 dox 核心治疗我们的动物
,只有 dox。

肿瘤减缓了它们的生长速度,

但它们仍然快速生长,

在两周内扩大了一倍。

然后,我们尝试
了我们的组合超级武器。

带有针对化学泵的 siRNA 的纳米层颗粒

此外,我们在核心中有 dox。

看 - 我们发现
肿瘤不仅停止生长,

它们实际上缩小了,

并且在某些情况下被消除了。

肿瘤实际上正在消退。

(鼓掌

)这种方式的好处
是可以个性化。

我们可以添加许多不同层的 siRNA

来解决不同的突变
和肿瘤防御机制。

我们可以将不同的药物
放入纳米粒子核心。

随着医生学习如何测试患者

并了解某些
肿瘤基因类型,

他们可以帮助我们确定哪些患者
可以从这种策略中受益,

以及我们可以使用哪些基因阻断剂。

卵巢癌引起
了我的特别共鸣。

它是一种非常具有侵袭性的癌症

,部分原因是它是
在非常晚期才被发现的,

那时它已经非常晚期

并且存在
许多基因突变。

在第一轮化疗


,75% 的患者会复发这种癌症。

它通常
以耐药形式回来。

高级别卵巢癌

是最大的
超级恶棍之一。

我们现在正将我们的超级武器

引向它的失败。

作为一名研究人员,

我通常不会与患者一起工作。

但我最近遇到了

一位卵巢癌幸存者的母亲
Mimi 和她的女儿 Paige。 母女俩表现

出的乐观和力量

以及他们的勇气和支持的故事深深地鼓舞了我。

在这次活动中,我们
谈到了针对癌症的不同技术

咪咪在

解释
学习这些努力如何

给后代带来希望时流下了眼泪,

包括她自己的女儿。

这真的让我很感动。

这不仅仅是建立
真正优雅的科学。

这是关于改变人们的生活。

这是

关于在分子尺度上理解工程的力量。

我知道,随着像 Paige 这样的学生
在他们的职业生涯中向前发展,

他们将为

解决世界上的一些重大
健康问题开辟新的可能性——

包括卵巢癌、神经系统
疾病、传染病——

就像化学工程
发现了一种 为我打开大门

的方法,并提供了一种

最小规模的工程方法,
即分子的工程方法,

可以在人类范围内治愈。

谢谢你。

(掌声)