A simple new blood test that can catch cancer early Jimmy Lin

Cancer.

Many of us have lost family,
friends or loved ones

to this horrible disease.

I know there are some of you
in the audience

who are cancer survivors,

or who are fighting cancer at this moment.

My heart goes out to you.

While this word often conjures up
emotions of sadness and anger and fear,

I bring you good news
from the front lines of cancer research.

The fact is, we are starting to win
the war on cancer.

In fact, we lie at the intersection

of the three of the most exciting
developments within cancer research.

The first is cancer genomics.

The genome is a composition

of all the genetic information
encoded by DNA

in an organism.

In cancers, changes
in the DNA called mutations

are what drive these cancers
to go out of control.

Around 10 years ago,
I was part of the team at Johns Hopkins

that first mapped
the mutations of cancers.

We did this first for colorectal,

breast, pancreatic and brain cancers.

And since then, there have been
over 90 projects in 70 countries

all over the world,

working to understand
the genetic basis of these diseases.

Today, tens of thousands
of cancers are understood

down to exquisite molecular detail.

The second revolution
is precision medicine,

also known as “personalized medicine.”

Instead of one-size-fits-all methods
to be able to treat cancers,

there is a whole new class of drugs
that are able to target cancers

based on their unique genetic profile.

Today, there are a host
of these tailor-made drugs,

called targeted therapies,

available to physicians even today

to be able to personalize
their therapy for their patients,

and many others are in development.

The third exciting revolution
is immunotherapy,

and this is really exciting.

Scientists have been able
to leverage the immune system

in the fight against cancer.

For example, there have been ways
where we find the off switches of cancer,

and new drugs have been able
to turn the immune system back on,

to be able to fight cancer.

In addition, there are ways
where you can take away immune cells

from the body,

train them, engineer them
and put them back into the body

to fight cancer.

Almost sounds like
science fiction, doesn’t it?

While I was a researcher
at the National Cancer Institute,

I had the privilege of working
with some of the pioneers of this field

and watched the development firsthand.

It’s been pretty amazing.

Today, over 600 clinical trials are open,

actively recruiting patients
to explore all aspects in immunotherapy.

While these three exciting
revolutions are ongoing,

unfortunately, this is only the beginning,

and there are still many, many challenges.

Let me illustrate with a patient.

Here is a patient
with a skin cancer called melanoma.

It’s horrible; the cancer
has gone everywhere.

However, scientists were able
to map the mutations of this cancer

and give a specific treatment
that targets one of the mutations.

And the result is almost miraculous.

Tumors almost seem to melt away.

Unfortunately, this is not
the end of the story.

A few months later, this picture is taken.

The tumor has come back.

The question is: Why?

The answer is tumor heterogeneity.

Let me explain.

Even a cancer as small
as one centimeter in diameter

harbors over a hundred million
different cells.

While genetically similar,

there are small differences
in these different cancers

that make them differently prone
to different drugs.

So even if you have a drug
that’s highly effective,

that kills almost all the cells,

there is a chance
that there’s a small population

that’s resistant to the drug.

This ultimately is the population

that comes back,

and takes over the patient.

So then the question is:
What do we do with this information?

Well, the key, then,

is to apply all these exciting
advancements in cancer therapy earlier,

as soon as we can,

before these resistance clones emerge.

The key to cancer and curing cancer
is early detection.

And we intuitively know this.

Finding cancer early
results in better outcomes,

and the numbers show this as well.

For example, in ovarian cancer,
if you detect cancer in stage four,

only 17 percent of the women
survive at five years.

However, if you are able to detect
this cancer as early as stage one,

over 92 percent of women will survive.

But the sad fact is, only 15 percent
of women are detected at stage one,

whereas the vast majority, 70 percent,
are detected in stages three and four.

We desperately need
better detection mechanisms for cancers.

The current best ways to screen cancer
fall into one of three categories.

First is medical procedures,

which is like colonoscopy
for colon cancer.

Second is protein biomarkers,
like PSA for prostate cancer.

Or third, imaging techniques,

such as mammography for breast cancer.

Medical procedures are the gold standard;

however, they are highly invasive

and require a large
infrastructure to implement.

Protein markers, while effective
in some populations,

are not very specific
in some circumstances,

resulting in high numbers
of false positives,

which then results in unnecessary work-ups
and unnecessary procedures.

Imaging methods,
while useful in some populations,

expose patients to harmful radiation.

In addition, it is not applicable
to all patients.

For example, mammography has problems
in women with dense breasts.

So what we need is a method
that is noninvasive,

that is light in infrastructure,

that is highly specific,

that also does not have false positives,

does not use any radiation

and is applicable to large populations.

Even more importantly,

we need a method
to be able to detect cancers

before they’re 100 million cells in size.

Does such a technology exist?

Well, I wouldn’t be up here
giving a talk if it didn’t.

I’m excited to tell you about
this latest technology we’ve developed.

Central to our technology
is a simple blood test.

The blood circulatory system,
while seemingly mundane,

is essential for you to survive,

providing oxygen
and nutrients to your cells,

and removing waste and carbon dioxide.

Here’s a key biological insight:

Cancer cells grow and die
faster than normal cells,

and when they die,

DNA is shed into the blood system.

Since we know the signatures
of these cancer cells

from all the different cancer
genome sequencing projects,

we can look for those signals in the blood

to be able to detect these cancers early.

So instead of waiting for cancers
to be large enough to cause symptoms,

or for them to be dense enough
to show up on imaging,

or for them to be prominent enough

for you to be able to visualize
on medical procedures,

we can start looking for cancers
while they are relatively pretty small,

by looking for these small amounts
of DNA in the blood.

So let me tell you how we do this.

First, like I said, we start off
with a simple blood test –

no radiation, no complicated equipment –

a simple blood test.

Then the blood is shipped to us,

and what we do
is extract the DNA out of it.

While your body is mostly healthy cells,

most of the DNA that’s detected
will be from healthy cells.

However, there will be a small amount,
less than one percent,

that comes from the cancer cells.

Then we use molecular biology methods
to be able to enrich this DNA

for areas of the genome which are known
to be associated with cancer,

based on the information
from the cancer genomics projects.

We’re able to then put this DNA
into DNA-sequencing machines

and are able to digitize the DNA
into A’s, C’s, T’s and G’s

and have this final readout.

Ultimately, we have information
of billions of letters

that output from this run.

We then apply statistical
and computational methods

to be able to find
the small signal that’s present,

indicative of the small amount
of cancer DNA in the blood.

So does this actually work in patients?

Well, because there’s no way
of really predicting right now

which patients will get cancer,

we use the next best population:

cancers in remission;

specifically, lung cancer.

The sad fact is, even with the best drugs
that we have today,

most lung cancers come back.

The key, then, is to see

whether we’re able to detect
these recurrences of cancers

earlier than with standard methods.

We just finished a major trial

with Professor Charles Swanton
at University College London,

examining this.

Let me walk you through
an example of one patient.

Here’s an example of one patient
who undergoes surgery

at time point zero,

and then undergoes chemotherapy.

Then the patient is under remission.

He is monitored using clinical exams
and imaging methods.

Around day 450, unfortunately,
the cancer comes back.

The question is:
Are we able to catch this earlier?

During this whole time,
we’ve been collecting blood serially

to be able to measure
the amount of ctDNA in the blood.

So at the initial time point, as expected,

there’s a high level
of cancer DNA in the blood.

However, this goes away to zero
in subsequent time points

and remains negligible
after subsequent points.

However, around day 340, we see the rise
of cancer DNA in the blood,

and eventually, it goes up higher
for days 400 and 450.

Here’s the key, if you’ve missed it:

At day 340, we see the rise
in the cancer DNA in the blood.

That means we are catching this cancer
over a hundred days earlier

than traditional methods.

This is a hundred days earlier
where we can give therapies,

a hundred days earlier
where we can do surgical interventions,

or even a hundred days less
for the cancer to grow

or a hundred days less
for resistance to occur.

For some patients, this hundred days
means the matter of life and death.

We’re really excited
about this information.

Because of this assignment,
we’ve done additional studies now

in other cancers,

including breast cancer, lung cancer

and ovarian cancer,

and I can’t wait to see how much earlier
we can find these cancers.

Ultimately, I have a dream,

a dream of two vials of blood,

and that, in the future, as part of all
of our standard physical exams,

we’ll have two vials of blood drawn.

And from these two vials of blood
we will be able to compare

the DNA from all known
signatures of cancer,

and hopefully then detect cancers
months to even years earlier.

Even with the therapies we have currently,

this could mean that millions
of lives could be saved.

And if you add on to that
recent advancements in immunotherapy

and targeted therapies,

the end of cancer is in sight.

The next time you hear the word “cancer,”

I want you to add to the emotions: hope.

Hold on.

Cancer researchers all around the world
are working feverishly

to beat this disease,

and tremendous progress is being made.

This is the beginning of the end.

We will win the war on cancer.

And to me, this is amazing news.

Thank you.

(Applause)

癌症。

我们中的许多人因这种可怕的疾病而失去了家人、
朋友或亲人

我知道在座的有些

人是癌症幸存者,

或者此刻正在与癌症作斗争。

我的心向你倾诉。

虽然这个词经常让人联想到
悲伤、愤怒和恐惧的情绪,但


从癌症研究的前线为您带来了好消息。

事实是,我们开始赢得
与癌症的战争。

事实上,我们处于癌症研究

中三个最令人兴奋的
发展的交叉点。

首先是癌症基因组学。

基因组是生物体中由 DNA 编码

的所有遗传信息的组合

在癌症中,
称为突变的 DNA 变化

是导致这些
癌症失控的原因。

大约 10 年前,
我是约翰霍普金斯大学团队的一员,该团队

首先绘制
了癌症突变图。

我们首先针对结肠直肠癌、

乳腺癌、胰腺癌和脑癌进行了这项研究。

从那时起,全球
70 个国家/地区开展了 90 多个项目

致力于了解
这些疾病的遗传基础。

今天,数以万计
的癌症被

理解为精细的分子细节。

第二次革命
是精准医疗,

也称为“个性化医疗”。

与能够治疗癌症的万能方法不同

有一种全新的药物
能够

根据其独特的遗传特征靶向癌症。

今天,有
许多这些量身定制的药物,

称为靶向疗法,

即使在今天也可供医生使用

,以便能够
为他们的患者个性化他们的治疗,

还有许多其他药物正在开发中。

第三个激动人心的革命
是免疫疗法

,这真的很令人兴奋。

科学家们已经
能够利用免疫系统

来对抗癌症。

例如,我们有办法
找到癌症的关闭开关

,新药能够
重新开启免疫系统,

从而能够对抗癌症。

此外,还有一些
方法可以从体内取出免疫细胞

,对其进行

训练、改造,
然后将它们放回体内

以对抗癌症。

几乎听起来像
科幻小说,不是吗?

当我
在美国国家癌症研究所担任研究员时,

我有幸
与该领域的一些先驱一起工作,

并亲眼目睹了这一发展。

这真是太神奇了。

如今,超过 600 项临床试验开放,

积极招募
患者探索免疫治疗的各个方面。

虽然这三场激动人心的
革命正在进行中,但

不幸的是,这仅仅是个开始,

还有很多很多的挑战。

让我用一个病人来说明。

这是一位患有
称为黑色素瘤的皮肤癌的患者。

这太糟糕了;
癌症无处不在。

然而,科学家们
能够绘制出这种癌症的突变图,


针对其中一种突变进行特定的治疗。

结果几乎是奇迹。

肿瘤似乎几乎消失了。

不幸的是,这不是
故事的结局。

几个月后,这张照片被拍了下来。

肿瘤又回来了。

问题是:为什么?

答案是肿瘤异质性。

让我解释。

即使是
直径只有一厘米的癌症也

含有超过一亿个
不同的细胞。

虽然在基因上相似,


这些不同的癌症存在微小差异,

这使得它们
对不同药物的易感性不同。

因此,即使你有一种高效的药物

可以杀死几乎所有的细胞,

也有
可能有一小部分人

对这种药物有抗药性。

这最终

是回归

并接管患者的人群。

那么问题来了:
我们如何处理这些信息?

那么,关键

是在这些抗性克隆出现之前,尽早将所有这些令人兴奋的
进展应用于癌症治疗

癌症和治愈癌症的关键
是早期发现。

我们直观地知道这一点。

早期发现癌症
会带来更好的结果

,数字也表明了这一点。

例如,在卵巢癌中,
如果您在第四阶段检测到癌症,则

只有 17% 的女性
在五年内存活。

但是,如果您能够在
第一阶段检测到这种癌症,

超过 92% 的女性将存活下来。

但可悲的事实是,只有 15%
的女性在第一阶段被检测到,

而绝大多数女性,即 70%,
在第三和第四阶段被检测到。

我们迫切需要
更好的癌症检测机制。

目前筛查癌症的最佳方法
属于三类之一。

首先是医疗程序

,就像结肠镜
检查结肠癌。

其次是蛋白质生物标志物,
如前列腺癌的 PSA。

或者第三,成像技术,

例如乳腺癌的乳房 X 光检查。

医疗程序是黄金标准;

但是,它们具有很强的侵入性

,需要大型
基础设施才能实施。

蛋白质标记物虽然
在某些人群中有效,但

在某些情况下并不是很特异,

从而导致
大量假阳性

,进而导致不必要的检查
和不必要的程序。

成像方法
虽然对某些人群有用,但

会使患者暴露于有害辐射。

此外,它并不适用
于所有患者。

例如,乳房 X 光检查
在乳房致密的女性中存在问题。

所以我们需要的是一种
无创

、基础设施轻

、特异性高

、没有误报、

不使用任何辐射

并且适用于大量人群的方法。

更重要的是,

我们需要一种
能够在癌症

达到 1 亿个细胞大小之前检测到它们的方法。

有这样的技术吗?

好吧,如果没有,我就不会在这里
发表演讲。

我很高兴向您介绍
我们开发的这项最新技术。

我们技术的核心
是简单的血液检测。

血液循环系统
虽然看似平凡,但

对您的生存至关重要,

为您的细胞提供氧气和营养,

并清除废物和二氧化碳。

这是一个关键的生物学见解:

癌细胞比正常细胞生长和死亡的
速度更快

,当它们死亡时,

DNA 会进入血液系统。

由于我们

从所有不同的癌症
基因组测序项目中了解这些癌细胞的特征,

我们可以在血液中寻找这些信号,

以便能够及早发现这些癌症。

因此
,与其等待癌症大到足以引起症状,

或者它们足够密集
以显示在成像中,

或者它们足够突出以

使您能够
在医疗程序中可视化,

我们可以开始寻找

通过在血液中寻找这些少量
的 DNA 来检测相对较小的癌症。

那么让我告诉你我们是如何做到这一点的。

首先,就像我说的,我们
从一个简单的验血开始——

没有辐射,没有复杂的设备——

一个简单的验血。

然后血液被运送给我们

,我们所做的
就是从中提取 DNA。

虽然您的身体大部分是健康细胞,

但检测到的大部分 DNA
都来自健康细胞。

然而,会有一小部分,
不到百分之一

,来自癌细胞。

然后,我们根据癌症基因组学项目的信息,使用分子生物学方法
来丰富

已知与癌症相关的基因组区域的 DNA

然后,我们能够将这些 DNA
放入 DNA 测序机器中

,并能够将 DNA 数字
化为 A、C、T 和 G,

并获得最终读数。

最终,我们获得

了此次运行输出的数十亿封信件的信息。

然后,我们应用统计
和计算方法

来找到存在
的小信号,表明

血液中存在少量癌症 DNA。

那么这对患者真的有效吗?

好吧,因为
现在无法真正预测

哪些患者会患上癌症,所以

我们使用次优人群:

缓解期的癌症;

特别是肺癌。

可悲的事实是,即使使用我们今天拥有的最好的药物

大多数肺癌也会复发。

那么,关键是看看

我们是否能够比使用标准方法更早地检测到
这些癌症的复发

我们刚刚

与伦敦大学学院的查尔斯·斯旺顿教授完成了一项重大试验,

研究了这一点。

让我带你看
一个病人的例子。

这是一个

在零时间点接受手术,

然后接受化疗的患者的例子。

然后患者处于缓解状态。

他使用临床检查
和成像方法进行监测。

不幸的是,在第 450 天左右
,癌症复发了。

问题是:
我们是否能够更早地抓住这一点?

在这段时间里,
我们一直在连续采集血液

,以便能够
测量血液中 ctDNA 的含量。

因此,正如预期的那样,在最初的时间点,血液中

存在高水平
的癌症 DNA。

然而,这
在随后的时间点消失为零,并且在随后的时间点

之后仍然可以忽略不计

然而,在第 340 天左右,我们看到
血液中癌症 DNA 的上升

,最终,它在第
400 天和第 450 天上升得更高。

这是关键,如果你错过了它:

在第 340 天,我们看到癌症 DNA 的
上升 血液中的癌症 DNA。

这意味着我们比传统方法
提前一百多天感染这种癌症

这比
我们可以提供治疗

的时间提前了一百天
,我们可以进行手术干预的时间提前了一百天,

或者甚至
比癌症生长

少了一百天,或者抗药性发生的时间少了一百天

对于一些病人来说,这百日
意味着生死攸关的大事。

我们
对这些信息感到非常兴奋。

由于这项任务,
我们现在对其他癌症进行了额外的研究

包括乳腺癌、肺癌

和卵巢癌

,我迫不及待地想看看
我们能早点发现这些癌症。

最终,我有

一个梦想,一个两瓶血的梦想,

并且在未来,作为
我们所有标准体检的一部分,

我们将抽取两瓶血。

从这两瓶血液中,
我们将能够比较

所有已知
癌症特征的 DNA,

并有望在
几个月甚至几年前检测出癌症。

即使使用我们目前的疗法,

这也可能意味着
可以挽救数百万人的生命。

如果再加
上免疫疗法

和靶向疗法的最新进展

,癌症的终结就在眼前。

下次当你听到“癌症”这个词时,

我希望你在情感上加上:希望。

坚持,稍等。

全世界的癌症研究人员都在

为战胜这种疾病而努力工作,

并且正在取得巨大的进展。

这是结束的开始。

我们将赢得与癌症的战争。

对我来说,这是一个了不起的消息。

谢谢你。

(掌声)