Hacking bacteria to fight cancer Tal Danino

In 1884, a patient’s luck seemed
to go from bad to worse.

This patient had a rapidly growing
cancer in his neck,

and then came down with an unrelated
bacterial skin infection.

But soon, something unexpected happened:

as he recovered from the infection,
the cancer also began to recede.

When a physician named William Coley
tracked the patient down 7 years later,

no visible signs of the cancer remained.

Coley believed something remarkable
was happening:

that the bacterial infection
had stimulated the patient’s immune system

to fight off the cancer.

Coley’s fortunate discovery
led him to pioneer

the intentional injection of bacteria
to successfully treat cancer.

Over a century later, synthetic biologists
have found an even better way

to use these once unlikely allies—

by programming them to safely
deliver drugs directly to tumors.

Cancer occurs when normal functions
of cells are altered,

causing them to rapidly multiply
and form growths called tumors.

Treatments like radiation, chemotherapy,
and immunotherapy

attempt to kill malignant cells,
but can affect the entire body

and disrupt healthy tissues
in the process.

However, some bacteria like E. coli

have the unique advantage of being able
to selectively grow inside tumors.

In fact, the core of a tumor forms
an ideal environment

where they can safely multiply,
hidden from immune cells.

Instead of causing infection,

bacteria can be reprogrammed
to carry cancer-fighting drugs,

acting as Trojan Horses
that target the tumor from within.

This idea of programming bacteria
to sense and respond in novel ways

is a major focus of a field called
Synthetic Biology.

But how can bacteria be programmed?

The key lies in manipulating their DNA.

By inserting particular genetic sequences
into bacteria,

they can be instructed
to synthesize different molecules,

including those
that disrupt cancer growth.

They can also be made
to behave in very specific ways

with the help of biological circuits.

These program different behaviors
depending on the presence, absence,

or combination of certain factors.

For example, tumors have low oxygen
and pH levels

and over-produce specific molecules.

Synthetic biologists can program bacteria
to sense those conditions,

and by doing so, respond to tumors
while avoiding healthy tissue.

One type of biological circuit,

known as a synchronized lysis circuit,
or SLC,

allows bacteria
to not only deliver medicine,

but to do so on a set schedule.

First, to avoid harming healthy tissue,

production of anti-cancer drugs
begins as bacteria grow,

which only happens
within the tumor itself.

Next, after they’ve produced the drugs,

a kill-switch causes
the bacteria to burst

when they reach a critical population
threshold.

This both releases the medicine
and decreases the bacteria’s population.

However, a certain percentage
of the bacteria remain alive

to replenish the colony.

Eventually their numbers grow large enough
to trigger the kill switch again,

and the cycle continues.

This circuit can be fine-tuned
to deliver drugs

on whatever periodic schedule
is best to fight the cancer.

This approach has proven promising
in scientific trials using mice.

Not only were scientists able
to successfully eliminate lymphoma tumors

injected with bacteria,

but the injection also stimulated
the immune system,

priming immune cells
to identify and attack untreated lymphomas

elsewhere in the mouse.

Unlike many other therapies,

bacteria don’t target a specific type
of cancer,

but rather the general characteristics
shared by all solid tumors.

Nor are programmable bacteria
limited to simply fighting cancer.

Instead, they can serve
as sophisticated sensors

that monitor sites of future disease.

Safe probiotic bacteria could perhaps
lie dormant within our guts,

where they’d detect, prevent,
and treat disorders

before they have the chance
to cause symptoms.

Advances in technology
have created excitement around a future

of personalized medicine
driven by mechanical nanobots.

But thanks to billions of years
of evolution

we may already have a starting point

in the unexpectedly biological
form of bacteria.

Add synthetic biology to the mix,

and who knows what might soon be possible.

1884 年,一个病人
的运气似乎每况愈下。

这名
患者颈部的癌症迅速发展,

然后患上了无关的
细菌性皮肤感染。

但很快,意想不到的事情发生了:

随着他从感染中恢复过来
,癌症也开始消退。 7 年后,

当一位名叫威廉·科利 (William Coley) 的医生
追踪该患者时,

没有留下明显的癌症迹象。

Coley 认为
正在发生一些非凡的事情

:细菌
感染刺激了患者的免疫系统

来抵抗癌症。

Coley 的幸运发现
使他开创

了有意注射细菌
以成功治疗癌症的先河。

一个多世纪后,合成
生物学家找到了一种更好的方法

来利用这些曾经不太可能的盟友——

通过编程将它们安全地
直接输送到肿瘤。

当细胞的正常功能发生改变时,就会发生癌症

导致它们迅速繁殖
并形成称为肿瘤的生长物。

放射、化学疗法
和免疫疗法等治疗

试图杀死恶性细胞,
但会影响整个身体


在此过程中破坏健康组织。

然而,像大肠杆菌

这样的一些细菌具有
能够选择性地在肿瘤内生长的独特优势。

事实上,肿瘤的核心形成
了一个理想的环境

,它们可以安全地繁殖,
对免疫细胞隐藏。 细菌

不会引起感染,而是

可以被重新编程
以携带抗癌药物,

充当
从内部靶向肿瘤的特洛伊木马。

这种对细菌进行编程
以以新颖方式感知和响应的想法

是合成生物学领域的主要焦点

但是如何对细菌进行编程呢?

关键在于操纵他们的DNA。

通过将特定的基因序列
插入细菌,

它们可以被
指示合成不同的分子,

包括
那些破坏癌症生长的分子。 在生物电路的帮助下,

它们也可以
以非常特定的方式表现出来

这些程序
根据某些因素的存在、不存在

或组合来规划不同的行为。

例如,肿瘤具有低氧
和 pH 水平,

并过度产生特定分子。

合成生物学家可以对细菌
进行编程以感知这些条件,

并通过这样做对肿瘤做出反应,
同时避开健康组织。

一种

称为同步裂解回路
或 SLC 的生物回路

使
细菌不仅可以输送药物,

而且可以按照既定的时间表进行输送。

首先,为了避免伤害健康组织,

抗癌药物的生产
随着细菌的生长而开始,

这只发生
在肿瘤本身。

接下来,在他们生产出药物后,当细菌达到临界种群阈值时,

一个杀灭开关会
导致细菌爆裂

这既释放了药物,
又减少了细菌的数量。

然而,一定比例
的细菌仍然存活

以补充菌落。

最终,它们的数量增长到足以
再次触发终止开关,

并且循环继续。

该电路可以进行微调,


最能对抗癌症的任何定期时间表输送药物。

这种方法
在使用老鼠的科学试验中被证明是有希望的。

科学家们不仅
能够成功消除

注射细菌的淋巴瘤肿瘤,

而且注射还刺激
了免疫系统,使

免疫细胞
能够识别和攻击小鼠其他部位的未经治疗的淋巴瘤

与许多其他疗法不同,

细菌不针对特定类型
的癌症,

而是针对
所有实体瘤共有的一般特征。

可编程细菌也不
限于简单地对抗癌症。

相反,它们可以用作

监测未来疾病部位的复杂传感器。

安全的益生菌可能
在我们的肠道内处于休眠状态

,它们可以在有机会引起症状之前检测、预防
和治疗疾病

技术的进步
让人们对

由机械纳米机器人驱动的个性化医疗的未来感到兴奋。

但是由于数十亿年
的进化,

我们可能已经有了一个

出乎意料的生物
形式细菌的起点。

将合成生物学添加到混合物中

,谁知道很快就会发生什么。