Why is it so hard to cure cancer Kyuson Yun

Why is it so difficult to cure cancer?

We’ve harnessed electricity,

sequenced the human genome,

and eradicated small pox.

But after billions of dollars in research,

we haven’t found a solution for a disease
that affects more than 14 million people

and their families at any given time.

Cancer arises as normal cells
accumulate mutations.

Most of the time,
cells can detect mutations or DNA damage

and either fix them or self destruct.

However, some mutations allow cancerous
cells to grow unchecked

and invade nearby tissues,

or even metastasize to distant organs.

Cancers become almost incurable
once they metastasize.

And cancer is incredibly complex.

It’s not just one disease.

There are more than 100 different types

and we don’t have a magic bullet
that can cure all of them.

For most cancers,

treatments usually include
a combination of surgery to remove tumors

and radiation and chemotherapy
to kill any cancerous cells left behind.

Hormone therapies,

immunotherapy,

and targeted treatments tailored
for a specific type of cancer

are sometimes used, too.

In many cases,
these treatments are effective

and the patient becomes cancer-free.

But they’re very far from 100% effective
100% of the time.

So what would we have to do to find cures
for all the different forms of cancer?

We’re beginning to understand a few
of the problems

scientists would have to solve.

First of all, we need new, better ways
of studying cancer.

Most cancer treatments are developed
using cell lines grown in labs

from cultures of human tumors.

These cultured cells have given us
critical insights

about cancer genetics and biology,

but they lack much of the complexity
of a tumor in an actual living organism.

It’s frequently the case that new drugs,
which work on these lab-grown cells,

will fail in clinical trials
with real patients.

One of the complexities
of aggressive tumors

is that they can have multiple populations
of slightly different cancerous cells.

Over time, distinct genetic mutations
accumulate in cells

in different parts of the tumor,
giving rise to unique subclones.

For example, aggressive brain tumors
called glioblastomas

can have as many as six different
subclones in a single patient.

This is called clonal heterogeneity,

and it makes treatment difficult because
a drug that works on one subclone

may have no effect on another.

Here’s another challenge.

A tumor is a dynamic
interconnected ecosystem

where cancer cells constantly
communicate with each other

and with healthy cells nearby.

They can induce normal cells to form
blood vessels that feed the tumor

and remove waste products.

They can also interact
with the immune system

to actually suppress its function,

keeping it from recognizing
or destroying the cancer.

If we could learn how to shut down
these lines of communication,

we’d have a better shot at vanquishing
a tumor permanently.

Additionally, mounting evidence suggests

we’ll need to figure out how to eradicate
cancer stem cells.

These are rare but seem
to have special properties

that make them resistant
to chemotherapy and radiation.

In theory, even if the rest of the tumor
shrinks beyond detection during treatment,

a single residual cancer stem cell
could seed the growth of a new tumor.

Figuring out how to target
these stubborn cells

might help prevent cancers
from coming back.

Even if we solved those problems,
we might face new ones.

Cancer cells are masters of adaptation,

adjusting their molecular and cellular
characteristics to survive under stress.

When they’re bombarded by radiation
or chemotherapy,

some cancer cells can effectively
switch on protective shields

against whatever’s attacking them
by changing their gene expression.

Malignant cancers are complex systems
that constantly evolve and adapt.

To defeat them, we need to find
experimental systems

that match their complexity,

and monitoring and treatment options
that can adjust as the cancer changes.

But the good news is
we’re making progress.

Even with all we don’t know,

the average mortality rate
for most kinds of cancer

has dropped significantly since the 1970s
and is still falling.

We’re learning more every day,

and each new piece of information gives
us one more tool to add to our arsenal.

为什么治愈癌症这么难?

我们利用了电力,

对人类基因组进行了测序,

并根除了天花。

但是经过数十亿美元的研究,

我们还没有找到一种解决方案来解决

在任何特定时间影响超过 1400 万人及其家人的疾病。

当正常细胞
积累突变时,癌症就会出现。

大多数时候,
细胞可以检测到突变或 DNA 损伤,

然后修复它们或自我毁灭。

然而,一些突变允许
癌细胞不受限制地生长

并侵入附近的组织,

甚至转移到远处的器官。

癌症一旦转移就几乎无法治愈

癌症非常复杂。

这不仅仅是一种疾病。

有超过 100 种不同的类型

,我们没有
可以治愈所有类型的灵丹妙药。

对于大多数癌症,

治疗通常包括
切除肿瘤的手术

和放射和化学疗法相结合,
以杀死任何留下的癌细胞。 有时也会使用针对特定类型癌症量身定制的

激素疗法、

免疫疗法

和靶向疗法

在许多情况下,
这些治疗是有效的

,并且患者变得无癌症。

但它们距离 100% 的 100% 有效还差得很远

那么,我们必须做些什么才能找到
治疗所有不同形式癌症的方法呢?

我们开始了解

科学家必须解决的一些问题。

首先,我们需要新的、更好
的癌症研究方法。

大多数癌症治疗是
使用在实验室中

从人类肿瘤培养物中培养的细胞系开发的。

这些培养的细胞为我们提供

关于癌症遗传学和生物学的重要见解,

但它们缺乏
实际活生物体中肿瘤的许多复杂性。

对这些实验室培养细胞起作用的新药经常

会在真实患者的临床试验中失败
。 侵袭性肿瘤

的复杂性之一

是它们可以有多个
略有不同的癌细胞群。

随着时间的推移,不同的基因突变
会在

肿瘤不同部位的细胞中积累,
从而产生独特的亚克隆。

例如,
被称为胶质母细胞瘤的侵袭性脑肿瘤

可以在单个患者中具有多达六个不同的
亚克隆。

这被称为克隆异质性

,它使治疗变得困难,因为
对一个亚克隆起作用的药物

可能对另一个亚克隆没有影响。

这是另一个挑战。

肿瘤是一个动态的
相互关联的生态系统

,癌细胞在其中不断地
相互交流,

并与附近的健康细胞交流。

它们可以诱导正常细胞形成
血管,为肿瘤提供营养

并清除废物。

它们还可以
与免疫系统相互作用

以实际抑制其功能,

使其无法识别
或破坏癌症。

如果我们能学会如何关闭
这些通讯线路,

我们就能更好地
永久消灭肿瘤。

此外,越来越多的证据表明

我们需要弄清楚如何根除
癌症干细胞。

这些是罕见的,但
似乎具有

使它们能够
抵抗化学疗法和放射线的特殊特性。

理论上,即使肿瘤的其余部分
在治疗过程中缩小到无法检测到,

单个残留的癌症干细胞
也可能导致新肿瘤的生长。

弄清楚如何靶向
这些顽固的细胞

可能有助于防止
癌症复发。

即使我们解决了这些问题,
我们也可能面临新的问题。

癌细胞是适应的主人,

调整它们的分子和细胞
特征以在压力下生存。

当它们受到放射线
或化学疗法的轰炸时,

一些癌细胞可以通过改变它们的基因表达来有效地
打开保护屏障,

抵御任何攻击它们
的东西。

恶性肿瘤
是不断进化和适应的复杂系统。

为了打败它们,我们需要找到

与其复杂性相匹配的实验系统,

以及
可以随着癌症变化而调整的监测和治疗方案。

但好消息是
我们正在取得进展。

即使我们不知道,大多数癌症

的平均死亡率

自 1970 年代以来已显着下降
,并且仍在下降。

我们每天都在学习更多

,每一条新信息都为
我们提供了一个可以添加到我们的武器库中的工具。