How squids outsmart their predators Carly Anne York

In the ocean’s depths,
two titans wage battle:

the sperm whale and the colossal squid.

Sperm whales use echolocation
to hunt these squid for food,

but even against this gigantic animal,
squid can put up an impressive fight.

Scientists know this because on the bodies
of washed-up whales,

they frequently find huge,
round suction scars,

emblazoned there by large,
grasping tentacles.

Ranging in size from
this giant’s impressive 14 meters

to the 2.5 centimeters
of the southern pygmy squid,

these creatures fall into the group
of animals known as cephalopods.

There are about 500 squid
species worldwide,

and they live in all the world’s oceans,

making them a reliable food source
for whales,

dolphins,

sharks,

seabirds,

fish,

and even other squid.

Indeed, squid themselves
are fearsome ocean predators.

But their most extraordinary adaptations

are those that have evolved
to help them thwart their predators.

Squid, which can be found mainly

in estuarine, deep-sea,
and open-water habitats,

often swim together in shoals.

Being out in the open without anywhere
to hide makes them vulnerable,

so as a first line of defense,
they rely on large, well-developed eyes.

In the colossal squid,
these are the size of dinner plates,

the largest known eyes
in the animal kingdom.

When it’s dark or the water is murky,
however,

squid rely on a secondary sensory system,

made from thousands of tiny hair cells
that are only about twelve microns long

and run along their heads and arms.

Each of these hair cells is attached
to axons in the nervous system.

Swimming animals create a wake,

so when the hairs on
the squid’s body detect this motion,

they send a signal to the brain,

which helps it determine
the direction of the water’s flow.

This way, a squid can sense an oncoming
predator in even the dimmest waters.

Aware of the threat, a squid
can then mask itself from a predator.

Squid skin contains thousands
of tiny organs called chromatophores,

each made of black, brown, red
or yellow pigments and ringed in muscle.

Reflecting cells beneath
the chromatophores

mirror the squid’s surroundings,
enabling it to blend in.

So, when the muscles contract,

the color of the pigment is exposed,

whereas when the muscles relax
the colors are hidden.

Each of these chromatophores

is under the individual control
of the squid’s nervous system,

so while some expand,
others remain contracted.

That enables countershading,

where the underside of the squid
is lighter than the top,

to eliminate a silhouette
that a predator might spy from below.

Some predators, however,
like the whales and dolphins,

get around this ruse by using sound waves
to detect a squid’s camouflaged form.

Not to be outfoxed, the squid still
has two more tricks up its sleeve.

The first involves ink,
produced inside its mantle.

Squid ink is made mostly of mucus
and melanin,

which produces its dark coloring.

When squid eject the ink,

they either use it to make
a large smokescreen

that completely blocks the predator’s view

or a blob that roughly mimics the size
and shape of the squid.

This creates a phantom form,
called a pseudomorph,

that tricks the predator
into thinking it’s the real squid.

As a final touch,
squid rely on jet propulsion

to rapidly shoot away from their hunters,

reaching speeds of up to 25 miles per hour
and moving meters away in mere seconds.

This makes them
Earth’s fastest invertebrates.

Some squid species have also developed
unique adaptive behaviors.

The deep-sea vampire squid,
when startled,

uses its webbed arms to make
a cape it hides behind.

The tiny bobtail, on the other hand,
tosses sand over its body

as it burrows away from prying eyes.

The Pacific flying squid
uses jet propulsion for another purpose:

to launch itself right out of the water.

Squids’ inventive adaptations
have allowed them

to proliferate
for over 500 million years.

Even now,
we’re still uncovering new species.

And as we do,

we’re bound to discover even more
about how these stealthy cephalopods

have mastered survival
in the deep and unforgiving sea.

在海洋深处,
两大巨头展开了战斗

:抹香鲸和巨型乌贼。

抹香鲸使用回声定位
来捕食这些鱿鱼作为食物,

但即使对抗这种巨大的动物,
鱿鱼也可以进行令人印象深刻的战斗。

科学家们之所以知道这一点,是因为在被
冲走的鲸鱼身上,

他们经常会发现巨大的
圆形吸力伤痕,

上面印着巨大的
抓手。 这些生物

的大小从
令人印象深刻的 14 米


南部侏儒鱿鱼的 2.5 厘米不等,

属于
被称为头足类动物的动物群。

全世界约有 500 种鱿鱼

,它们生活在全世界的海洋中,

是鲸鱼、

海豚、

鲨鱼、

海鸟、

鱼类

甚至其他鱿鱼的可靠食物来源。

事实上,鱿鱼本身
就是可怕的海洋掠食者。

但它们最非凡的适应能力

是那些已经进化
到可以帮助它们挫败捕食者的适应能力。

鱿鱼主要生活

在河口、深海
和开阔水域的栖息地,

经常一起在浅滩游泳。

在露天没有任何地方
可以隐藏使它们很脆弱,

因此作为第一道防线,
它们依赖于发育良好的大眼睛。

在巨大的鱿鱼中,
这些是餐盘的大小,

是动物王国中已知最大的眼睛。 然而,

当天黑或水浑浊
时,

鱿鱼依靠第二感觉系统,该系统

由数千个
仅约 12 微米长的微小毛细胞组成

,沿着头部和手臂延伸。

这些毛细胞中的每一个都附着
在神经系统的轴突上。

游泳的动物会产生尾迹,

因此当
乌贼身上的毛发检测到这种运动时,

它们会向大脑发送信号

,帮助大脑确定
水流的方向。

这样,即使在最昏暗的水域,乌贼也能感知到迎面而来的
捕食者。

意识到威胁后,乌贼
可以掩饰自己免受捕食者的伤害。

鱿鱼皮含有数千个
称为色素细胞的微小器官,

每个器官都由黑色、棕色、红色
或黄色色素组成,并在肌肉中形成环状。 色素

细胞下方的反射细胞

反映了鱿鱼的周围环境,
使其能够融入其中。

因此,当肌肉收缩时,

色素的颜色就会暴露出来,

而当肌肉放松时
,颜色就会隐藏起来。

这些

色素细胞中的每一个都在鱿鱼神经系统的单独控制之下,

因此虽然有些会扩张,但
有些会保持收缩。

这使得反阴影(

鱿鱼的下侧
比顶部轻)

能够
消除捕食者可能从下方窥探的轮廓。

然而,一些捕食者,
如鲸鱼和海豚,

通过使用
声波检测鱿鱼的伪装形式来绕过这个诡计。

不要被打败,鱿鱼
还有两个窍门。

第一个涉及墨水,
在它的地幔内产生。

鱿鱼墨主要由粘液
和黑色素制成,

从而产生深色。

当鱿鱼喷出墨水时,

它们要么用它来制造
一个

完全阻挡捕食者视线的大烟幕,

要么用它来制造一个大致模仿
鱿鱼大小和形状的斑点。

这创造了一种幻影形式,
称为假体

,诱使
捕食者认为它是真正的鱿鱼。

最后,
乌贼依靠喷气推进

器迅速从猎物身边射出,

速度高达每小时 25 英里,
并在几秒钟内移动数米。

这使它们成为
地球上最快的无脊椎动物。

一些鱿鱼物种也发展出
独特的适应性行为。

深海吸血乌贼受到
惊吓时,会

用它的蹼状手臂制作
一件隐藏在背后的斗篷。

另一方面,小短尾猫在

躲避窥探的眼睛时将沙子扔到它的身体上。

太平洋乌贼
使用喷气推进器还有另一个目的:

将自己从水中发射出去。

鱿鱼的创造性
适应使它们

能够
繁殖超过 5 亿年。

即使是现在,
我们仍在发现新物种。

正如我们所做的那样,

我们一定会发现更多
关于这些隐形头足类动物如何

在深海和无情的海洋中生存的信息。