How to biohack your cells to fight cancer Greg Foot

Ok,
so you,

are a 4 billion year old
meat robot.

Yeah, you heard me right.

In fact, as you’re made of
30-ish trillion cells,

and each of those have their own task,

you’re a robot made of trillions
of mini robots-

you are a mega-meat-bot!

And your mission, for the past 4 billion
years or so-

and for as long as you keep
playing this game of life-

is to safeguard the code.

To duplicate it.
To pass it on.

The thing is, you’re rubbish at
copying your own code.

Every time it’s copied, errors crop up.

Not good when an error makes
a robot worse at surviving,

but sometimes a mistake
helps them survive…

and they pass that glitch in the code on-

that’s evolution in a nutshell, right?

Which means you’re not the result
of some fancy design, I’m afraid.

You’re a result of billions of
years of bad copies.

Go you.

Another reason you’re not totally awesome

is because that megabot of yours
often breaks down.

Fortunately,

cardiologists, immunologists,
microbiologists- all the “ists”-

have spent centuries figuring out
our sensors and wiring

so if something does go wrong,
they can usually fix it.

Where they struggle, though, is when
the machinery turns on itself-

when a copying error leads a cell
to start dividing uncontrollably,

to grow and multiply into a tumor.

That’s cancer.

And sadly, even with the might
of our modern medicine,

some cancers evade treatment.

But this is where a new band of
biologists step into the story:

The “Synthetic Biologists.”

These biohackers are mashing up science,
medicine and engineering

to rewrite the code and fix
the un-fixable.

Biohackers are going into a
patient’s genetic code

and reprogramming their own immune system

to recognize cancer cells
and destroy them.

It’s called CAR T-cell therapy,
and it’s awesome.

See, you’re constantly under
attack by pathogens-

single-celled bacteria, viruses and fungi.

Despite deciding, back in the day,

to stay solo and not ‘avengers assemble’
like you did,

those pathogens see you, in all
your mega-meat-bot glory,

as a fortress ripe for the plundering.

Thankfully, you’ve got a security team
in place to battle these invaders-

your immune system-

and some of it’s top guards are
your white blood cells.

They trawl the darkness
that is your inner space,

checking the IDs of any cells they pass…

although they’re not name badges,

but rather protein fragments on
the cell’s surface called antigens.

There are two types of these guards:
T-cells and B-cells.

T-cells check those antigen IDs
using special claws-

receptors that lock with a
particular antigen.

If they find a match, they attach and
they release toxic chemicals

that burst open the
invading cell’s membrane.

Their B-cell workmates create antibodies-

loads of small proteins,

little claws that latch perfectly onto
a particular antigen,

marking them for destruction.

These two comrades have got your back

and your immune system is brilliant at
spotting and fighting pathogens

that invade from outside.

However,

they’re not so good at spotting your
own cells that have gone rogue.

The antigens on cancerous cells
don’t look weird,

they look a lot like your own cells,

and the T’s and B’s aren’t
programmed to attack them.

The usual way to deal with cancer is
to try to cut the tumor out,

or turn to radiotherapy and
then chemotherapy

to destroy or block the
growth of cancer cells,

but if it’s a blood cancer, if it’s
floating around your whole body,

you can’t do that.

And if the blood cancer actually starts in
your white blood cells-

those key guards in your immune system-

you’ll really struggle to spot it.

That’s the case with acute
lymphoblastic leukemia,

and that’s where CAR T-cell therapy
is kicking butt.

The biohackers are reprogramming a
patient’s own immune system

to recognize particular antigens- those
particular protein fragments-

on the cancer cells.

To do it, you first need millions
of a patient’s T-cells

Then, to get a T-cell to do
something different,

you need to replace its normal
code with something new,

something you’ve designed.

What synthetic biologists can now do
with DNA is super cool-

they use a computer to put together
their own sequences of bases-

the chemical letters that spell
out the DNA-

then they model what that new genetic
code will do on a computer

and then make those sequences
on a DNA printer-

yeah, that’s a thing!-

printing not with ink, or with a plastic
polymer like in a 3D printer,

but with those fundamental
building blocks of life,

with those A’s and C’s and T’s and G’s.

The new code they designed for a
T-cell has 3 key instructions:

  1. It tells it how to recognize
    and kill a cancer cell.

More specifically,

how to modify an antibody-

what the B-cells make to latch
onto a target antigen.

The antibody is modified to
make a new receptor

that can detect the particular antigens
on the specific cancer.

  1. It tells it to make copies of itself
    when it finds that cancer cell

and 3. It tells it to survive
in the patient’s body.

To get this new code into
the patient’s T-cells,

you use a vector-

it’s something that will easily
infect the T-cell

and carry that bespoke DNA in with it.

And voila!
One CAR T-cell.

The name comes from a fire-breathing
monster from Ancient Greece,

that had a lion’s head, a goat’s
body and a serpent’s tail.

It was called “Chimera”-
a name that has now come to be used

for something that contains two or
more different types of tissues or cells.

As this newly engineered cell’s genetic
code is part T-cell, part antibody,

it’s a “C"himera and it goes in search
of the cancer’s “A"ntigen

using its new “R"eceptor.

Before you put the multiplied up
T-cells back into the patient,

you give them a mild dose of chemotherapy
to wipe their existing T-cells.

Then you simply reinsert the
now modified T-cells-

the CAR T-cells-

and they follow their normal DNA
programming to move and search.

However, thanks to their new
butt-kicking code,

they’ve changed what they’re looking for:

they’re now on a mission to find the
cancerous cells and destroy them.

Unlike conventional chemical-based drugs

that get used up or excreted from
the body pretty quickly,

CAR T-cells are living drugs that stay in
the patient’s bloodstream for years.

That’s a huge pro.

The flip side is that they’re expensive-

each CAR T-cell treatment is
bespoke to the patient-

and it’s more difficult to get them to
work with common cancers

like breast or lung, because you need a
specific antigen on the cancer cells

for the CAR T-cell to target-

and it’s much easier to find
that in blood cancers.

It’s still early days, though,

and there’s an exciting
future for CAR T-cell therapy.

Researchers like Dr. Martin Pule
and his team at UCL,

are working on improving the leukemia
and lymphoma treatments even further,

and there’s recently been some
promising work on solid cancers.

Thanks to CAR T-cell therapy,

the survival rate for B acute
lymphoblastic leukemia has improved hugely

-nearly all patients go into remission-

which means that leukemia cannot
be detected anymore-

and most patients stay in remission.

Biohacking is here,

and it can reprogram your own
genetic code to enable your mega-meat-bot

to do things it’s never been
able to do before!

好的,
所以你

是一个有 40 亿年历史的
肉类机器人。

是的,你没听错。

事实上,由于你是由
30 万亿个细胞组成的,

而且每个细胞都有自己的任务,所以

你是一个由数万亿个迷你机器人组成的机器人——

你是一个超级肉食机器人!

而你的使命,在过去的 40 亿
年左右

——只要你继续
玩这个生命游戏——

就是保护代码。

复制它。
把它传下去。

问题是,您在
复制自己的代码方面很垃圾。

每次复制时,都会出现错误。

当一个错误
使机器人更难生存时,这并不好,

但有时一个错误
可以帮助他们生存

……他们在代码中传递了那个小故障——

简而言之,这就是进化,对吧?

这意味着你不是
一些花哨设计的结果,我害怕。

您是数十亿
年不良副本的结果。

去你。

你不是很厉害的另一个原因是你的

那个巨型机器人
经常出故障。

幸运的是,

心脏病学家、免疫学家、
微生物学家——所有的“主义者”——

已经花费了几个世纪的时间来弄清楚
我们的传感器和接线,

所以如果出现问题,
他们通常可以修复它。

然而,他们挣扎的地方是
当机器自行启动

时——当复制错误导致
细胞开始不受控制地分裂

、生长并繁殖成肿瘤时。

那是癌症。

可悲的是,即使有
我们现代医学的力量,

一些癌症也逃避了治疗。

但这就是一群新的
生物学家进入故事的地方

:“合成生物学家”。

这些生物黑客正在融合科学、
医学和工程学

来重写代码并修复无法修复的问题

生物黑客正在进入
患者的遗传密码

并重新编程他们自己的免疫系统

以识别癌细胞
并摧毁它们。

它被称为 CAR T 细胞疗法
,非常棒。

看,你经常
受到病原体的攻击

——单细胞细菌、病毒和真菌。

尽管在过去

决定保持独奏而不是像你那样“复仇者集结”

但那些病原体在你所有
的巨型肉类机器人荣耀中将你

视为一个成熟的掠夺堡垒。

值得庆幸的是,你有一个安全
团队来对抗这些入侵者 -

你的免疫系统

  • 其中一些顶级卫士是
    你的白细胞。

他们在
你的内心空间的黑暗中搜寻,

检查他们通过的任何细胞的 ID……

虽然它们不是名牌,

而是
细胞表面称为抗原的蛋白质片段。

这些守卫有两种类型:
T 细胞和 B 细胞。

T 细胞
使用

与特定抗原锁定的特殊爪状受体检查这些抗原 ID

如果他们找到匹配项,它们就会附着并
释放有毒化学物质,这些化学物质

会爆开
入侵细胞的膜。

他们的 B 细胞同事创造了抗体——

大量的小蛋白质,

小爪子可以完美地锁定在
特定抗原上,

标记它们以进行破坏。

这两位同志为您提供了支持

,您的免疫系统在
发现和抵抗

从外部入侵的病原体方面表现出色。

然而,

他们并不擅长
发现你自己的流氓细胞。

癌细胞上的抗原
看起来并不奇怪,

它们看起来很像你自己的细胞,

而且 T 和 B 没有被
编程来攻击它们。

对付癌症,通常的方法是
尽量把肿瘤切掉,

或者先放疗
再化疗

,破坏或阻止
癌细胞的生长,

但如果是血癌,如果它
漂浮在你的全身,

你可以 不要那样做。

而且,如果血癌实际上始于
您的白细胞——

免疫系统中的关键卫士——

您将很难发现它。

急性淋巴细胞白血病就是这种情况

,这就是 CAR T 细胞疗法
发挥作用的地方。

生物黑客正在对
患者自身的免疫系统

进行重新编程,以识别癌细胞上的特定抗原——那些
特定的蛋白质片段

要做到这一点,您首先需要数
百万患者的 T 细胞。

然后,要让 T 细胞做
一些不同的事情,

您需要用您设计的新代码替换它的正常
代码

合成生物学家现在可以
用 DNA 做的事情非常酷——

他们使用计算机将
自己的碱基序列组合在一起——

拼出 DNA 的化学字母——

然后他们模拟新的遗传
密码将在计算机上做什么

,然后制作
DNA 打印机上的那些序列——

是的,那是一回事!——

不是用墨水打印,也不是
像 3D 打印机那样用塑料聚合物打印,

而是用
生命的基本组成部分,

用那些 A 和 C 以及 T 和 G 打印。

他们为 T 细胞设计的新代码
有 3 个关键指令:

  1. 它告诉它如何识别
    和杀死癌细胞。

更具体地说,

如何修改

抗体——B 细胞如何
锁定目标抗原。

抗体被修饰以
制造一种新的受体

,可以检测
特定癌症上的特定抗原。

  1. 它告诉
    它在发现癌细胞时复制自己

和 3. 它告诉它
在患者体内存活。

要将这个新代码
输入患者的 T 细胞,

您需要使用载体——

它可以很容易地
感染 T 细胞

并携带定制的 DNA。

瞧!
一个 CAR T 细胞。

这个名字
来自古希腊的一种喷火怪物,

它有一个狮子的头,一个山羊的
身体和一条蛇的尾巴。

它被称为“嵌合体”——
这个名称现在已被

用于包含两种或
多种不同类型的组织或细胞的东西。

由于这种新改造的细胞的遗传
密码部分是 T 细胞,部分是抗体,

因此它是一个“C”himera,它

使用其新的“R”受体寻找癌症的“A”抗原。

在您将倍增的
T 细胞放回患者体内之前,

您先给他们进行温和剂量的化疗
以清除其现有的 T 细胞。

然后你只需重新插入
现在修改过的 T 细胞

——CAR T 细胞

——它们就会按照正常的 DNA
编程来移动和搜索。

然而,由于他们新的
对接代码,

他们改变了他们正在寻找的东西:

他们现在的任务是找到
癌细胞并摧毁它们。

很快用完或从体内排出的传统化学药物不同

CAR T 细胞是
在患者血液中停留多年的活药物。

这是一个巨大的专业人士。

另一方面是它们很昂贵——

每种 CAR T 细胞治疗都是
为患者量身定制

的——而且更难让
它们治疗常见的癌症,

如乳腺癌或肺癌,因为你需要
癌细胞上的特定抗原来

治疗 CAR T 细胞

的目标——而且在血癌中更容易找到
它。

不过,现在还处于早期阶段,

CAR T 细胞疗法有着令人兴奋的未来。

像伦敦大学学院的 Martin Pule 博士和他的团队这样的研究人员

正致力于进一步改善白血病
和淋巴瘤的治疗,

最近
在实体癌方面取得了一些有希望的工作。

多亏了 CAR T 细胞疗法,

B 型急性
淋巴细胞白血病的存活率大大提高——

几乎所有患者都进入缓解期——

这意味着无法
再检测到白血病——

并且大多数患者保持缓解期。

生物黑客技术就在这里

,它可以重新编程你自己的
遗传密码,让你的巨型肉类机器人

能够做以前从未做过的
事情!