How we could make carbonnegative concrete Tom Schuler

Transcriber: TED Translators Admin
Reviewer: Rhonda Jacobs

Concrete is all around us,

but most of us don’t even
notice that it’s there.

We use concrete to build our roads,
buildings, bridges, airports;

it’s everywhere.

The only resource we use
more than concrete is water.

And with population
growth and urbanization,

we’re going to need
concrete more than ever.

But there’s a problem.

Cement’s the glue
that holds concrete together.

And to make cement,

you burn limestone with other ingredients
in a kiln at very high temperatures.

One of the byproducts of that process
is carbon dioxide, or CO2.

For every ton of cement
that’s manufactured,

almost a ton of CO2
is emitted into the atmosphere.

As a result,

the cement industry is the second-largest
industrial emitter of CO2,

responsible for almost eight percent
of total global emissions.

If we’re going to solve global warming,

innovation in both cement production
and carbon utilization

is absolutely necessary.

Now, to make concrete, you mix cement
with stone, sand, and other ingredients,

throw in a bunch of water,
and then wait for it to harden or cure.

With precast products
like pavers and blocks,

you might shoot steam
into the curing chamber

to try to accelerate the curing process.

For buildings, roads, and bridges,

we pour what’s called ready-mix concrete
into a mold on the job site

and wait for it to cure over time.

Now, for over 50 years,
scientists believed

that if they cured concrete
with CO2 instead of water,

it would be more durable,

but they were hamstrung
by Portland cement’s chemistry.

You see, it likes to react
with both water and CO2,

and those conflicting chemistries
just don’t make for very good concrete.

So we came up with
a new cement chemistry.

We use the same equipment
and raw materials,

but we use less limestone,

and we fire the kiln
at a lower temperature,

resulting in up to a 30 percent
reduction in CO2 emissions.

Our cement doesn’t react with water.

We cure our concrete with CO2,

and we get that CO2 by capturing waste gas

from industrial facilities
like ammonia plants or ethanol plants

that otherwise would’ve been
released into the atmosphere.

During curing, the chemical reaction
with our cement breaks apart the CO2,

capturing the carbon to make limestone,

and that limestone’s used
to bind the concrete together.

Now, if a bridge made out of our concrete
were ever demolished,

there’s no fear of the CO2 being emitted
because it doesn’t exist any longer.

When you combine the emissions reduction
during cement production

with the CO2 consumption
during concrete curing,

we reduce cement’s carbon footprint
by up to 70 percent.

And because we don’t consume water,
we also save trillions of liters of water.

Now, convincing a 2,000-year-old industry

that hasn’t evolved much
over the last 200 years,

is not easy;

but there are lots of new
and existing industry players

that are attacking that challenge.

Our strategy is to ease adoption

by seeking solutions
that go beyond just sustainability.

We use the same processes,
raw material, and equipment

that’s used to make traditional concrete,

but our new cement
makes concrete cured with CO2

that is stronger, more durable,
lighter in color,

and it cures in 24 hours
instead of 28 days.

Our new technology for ready-mix

is in testing and
infrastructure applications,

and we’ve pushed our research even further

to develop a concrete
that may become a carbon sink.

That means that we will consume more CO2
than is emitted during cement production.

Since we can’t use CO2 gas
at a construction site,

we knew we had to deliver
it to our concrete

in either a solid or liquid form.

So we’ve been partnering with companies
that are taking waste CO2

and transforming it
into a useful family of chemicals

like oxalic acid or citric acid,

the same one you use in orange juice.

When that acid reacts with our cement,

we can pack in as much as four times
more carbon into the concrete,

making it carbon negative.

That means that for a one-kilometer
road section, we would consume more CO2

than almost a 100,000 trees do
during one year.

So thanks to chemistry and waste CO2,

we’re trying to convert
the concrete industry,

the second-most-used
material on the planet,

into a carbon sink for the planet.

Thank you.

抄写员:TED Translators Admin
Reviewer:Rhonda Jacobs

Concrete 就在我们身边,

但我们大多数人甚至都没有
注意到它的存在。

我们用混凝土建造我们的道路、
建筑物、桥梁、机场;

它无处不在。

我们比混凝土使用更多的唯一资源
是水。

随着人口
增长和城市化,

我们
将比以往任何时候都更需要混凝土。

但是有一个问题。

水泥
是将混凝土粘合在一起的胶水。

为了制造水泥,

您需要
在窑中以非常高的温度燃烧石灰石和其他成分。

该过程的副产品之一
是二氧化碳或二氧化碳。


生产

一吨水泥,就有近一吨
二氧化碳排放到大气中。

因此

,水泥行业是二氧化碳的第二大
工业排放国,

占全球排放总量的近 8%。

如果我们要解决全球变暖问题,

水泥生产
和碳利用方面的创新

是绝对必要的。

现在,要制作混凝土,您将水泥
与石头、沙子和其他成分

混合,然后倒入一堆水,
然后等待它硬化或固化。

对于
摊铺机和砌块等预制产品,

您可能会
向固化室喷射蒸汽

以尝试加速固化过程。

对于建筑物、道路和桥梁,

我们将所谓的预拌混凝土倒入施工
现场的模具中,

并等待其随着时间的推移而固化。

现在,50 多年来,
科学家们认为

,如果他们
用二氧化碳而不是水来固化混凝土,

它会更耐用,

但他们
却被波特兰水泥的化学成分所束缚。

你看,它喜欢
与水和二氧化碳发生反应,

而那些相互冲突的化学物质
并不能制造出非常好的混凝土。

所以我们想出了
一种新的水泥化学方法。

我们使用相同的设备
和原材料,

但我们使用的石灰石更少,

并且我们
在较低温度下烧制窑炉,

从而减少了高达 30%
的二氧化碳排放量。

我们的水泥不与水发生反应。

我们用二氧化碳固化混凝土

,我们通过捕获

来自工业设施(
如氨厂或乙醇厂)的废气来获得二氧化碳

,否则这些废气会被
释放到大气中。

在固化过程中,
与我们的水泥的化学反应会分解二氧化碳,

捕获碳以制造石灰石,

而石灰石
用于将混凝土粘合在一起。

现在,如果一座由我们的混凝土制成的桥梁
被拆除,

则不必担心会排放二氧化碳,
因为它不再存在。

当您将
水泥生产过程中的减排


混凝土固化过程中的二氧化碳消耗相结合时,

我们可以将水泥的碳足迹
减少多达 70%。

而且因为我们不消耗水,
我们也节省了数万亿升的水。

现在,要说服一个拥有 2000 年历史的行业

在过去 200 年中没有太大的发展,

并不容易。

但是有许多新的
和现有的行业

参与者正在应对这一挑战。

我们的策略是

通过寻求
超越可持续性的解决方案来简化采用。

我们使用与制造传统混凝土相同的工艺、
原材料和设备

但我们的新水泥
使用二氧化碳固化的混凝土

更坚固、更耐用、
颜色更浅,

并且在 24 小时内
而不是 28 天内固化。

我们的预拌新技术

正在测试和
基础设施应用中

,我们进一步推动了我们的研究,

以开发
一种可能成为碳汇的混凝土。

这意味着我们将消耗
比水泥生产过程中排放的更多的二氧化碳。

由于我们不能在建筑工地使用二氧化碳气体

我们知道我们必须将

以固体或液体形式输送到混凝土中。

因此,我们一直在与一些公司合作,这些公司
将废弃的二氧化碳

转化为有用的化学物质家族,

如草酸或柠檬酸

,与您在橙汁中使用的化学物质相同。

当这种酸与我们的水泥发生反应时,

我们可以
在混凝土中加入多达四倍的碳,

使其成为负碳。

这意味着对于一公里的
路段,我们一年消耗的二氧化碳

比近 100,000 棵树的消耗量还要多

因此,由于化学和二氧化碳废物,

我们正试图将地球

上第二大使用
材料的混凝土工业

转变为地球的碳汇。

谢谢你。