Where do genes come from Carl Zimmer

You have about 20,000 genes in your DNA.

They encode the molecules that
make up your body,

from the keratin in your toenails,
to the collagen at the tip of your nose,

to the dopamine surging around
inside your brain.

Other species have genes of their own.

A spider has genes for spider silk.

An oak tree has genes for chlorophyll,
which turns sunlight into wood.

So where did all those genes come from?

It depends on the gene.

Scientists suspect that life
started on Earth about 4 billion years ago.

The early life forms were
primitive microbes

with a basic set of genes for
the basic tasks required to stay alive.

They passed down those basic genes
to their offspring

through billions of generations.

Some of them still do the same jobs
in our cells today, like copying DNA.

But none of those microbes had genes
for spider silk or dopamine.

There are a lot more genes on Earth today
than there were back then.

It turns out that a lot of those
extra genes were born from mistakes.

Each time a cell divides,
it makes new copies of its DNA.

Sometimes it accidentally copies
the same stretch of DNA twice.

In the process, it may make an extra copy
of one of its genes.

At first, the extra gene works the same
as the original one.

But over the generations,
it may pick up new mutations.

Those mutations may change how
the new gene works,

and that new gene may duplicate again.

A surprising number of our
mutated genes emerged more recently;

many in just the past few million years.

The youngest evolved after our own species
broke off from our cousins, the apes.

While it may take over a million years
for a single gene to give rise

to a whole family of genes,

scientists are finding that once
the new genes evolve,

they can quickly take on
essential functions.

For example, we have hundreds of genes
for the proteins in our noses

that grab odor molecules.

The mutations let them grab
different molecules,

giving us the power to perceive trillions
of different smells.

Sometimes mutations have
a bigger effect on new copies of genes.

They may cause a gene to make its
protein in a different organ,

or at a different time of life,

or the protein may start doing
a different job altogether.

In snakes, for example, there’s a gene
that makes a protein for killing bacteria.

Long ago, the gene duplicated
and the new copy mutated.

That mutation changed
the signal in the gene

about where it should make its protein.

Instead of becoming active in
the snake’s pacreas,

it started making this bacteria-killing
protein in the snake’s mouth.

So when the snake bit its prey,
this enzyme got into the animal’s wound.

And when this protein proved
to have a harmful effect,

and helped the snake catch more prey,

it became favored.

So now what was a gene in the pancreas
makes a venom in the mouth

that kills the snake’s prey.

And there are even more incredible ways
to make a new gene.

The DNA of animals and plants
and other species

contain huge stretches without any
protein coding genes.

As far as scientists can tell,
its mostly random sequences

of genetic gibberish that serve
no function.

These stretches of DNA
sometimes mutate, just like genes do.

Sometimes those mutations
turn the DNA into a place

where a cell can start reading it.

Suddenly the cell is making a new protein.

At first, the protein may be useless,
or even harmful,

but more mutations can
change the shape of the protein.

The protein may start
doing something useful,

something that makes an organism
healthier, stronger,

better able to reproduce.

Scientists have found these new genes
at work in many parts of animal bodies.

So our 20,000 genes have many origins,

from the origin of life, to new genes
still coming into existence from scratch.

As long as life is here on Earth,
it will be making new genes.

你的 DNA 中有大约 20,000 个基因。

它们对
构成你身体的分子进行编码,

从脚趾甲中的角蛋白
到鼻尖的胶原蛋白,

再到在
大脑内涌动的多巴胺。

其他物种也有自己的基因。

蜘蛛有蜘蛛丝基因。

一棵橡树具有叶绿素基因,叶绿素
可以将阳光转化为木材。

那么这些基因是从哪里来的呢?

这取决于基因。

科学家怀疑地球上的生命
大约在 40 亿年前开始。

早期的生命形式是

具有一组基本基因的原始微生物,这些基因可以
完成维持生命所需的基本任务。

他们将这些基本基因

通过数十亿代传给了后代。

他们中的一些人今天仍然
在我们的细胞中做同样的工作,比如复制 DNA。

但这些微生物都没有
蜘蛛丝或多巴胺的基因。

今天地球上的基因
比当时多得多。

事实证明,许多
额外的基因是由错误产生的。

每次细胞分裂时
,都会复制其 DNA 的新副本。

有时它会不小心
将同一段 DNA 复制两次。

在此过程中,它可能会复制
其一个基因的额外副本。

起初,额外的基因与原始基因的作用
相同。

但经过几代人,
它可能会产生新的突变。

这些突变可能会
改变新基因的工作方式,

并且新基因可能会再次复制。

最近出现了数量惊人的
突变基因。

仅仅在过去的几百万年里。

在我们自己的物种与我们的表亲猿类分离后,最年轻的进化而来

虽然单个基因可能需要一百万年

才能产生整个基因家族,但

科学家们发现,
一旦新基因进化,

它们可以迅速
发挥基本功能。

例如,
我们的鼻子中有数百个蛋白质基因,这些蛋白质

可以捕捉气味分子。

这些突变让它们能够抓住
不同的分子,

让我们有能力感知数万亿
种不同的气味。

有时突变
对基因的新拷贝有更大的影响。

它们可能会导致基因
在不同的器官

或生命的不同时期制造其蛋白质,

或者蛋白质可能会开始
完全不同的工作。

例如,在蛇中,有一个基因
可以制造一种杀死细菌的蛋白质。

很久以前,基因复制
了,新的副本发生了突变。

这种突变改变
了基因中

关于它应该在哪里制造蛋白质的信号。 它没有

在蛇的胰腺中变得活跃,而是开始在蛇的嘴里

制造这种杀死细菌的
蛋白质。

所以当蛇咬它的猎物时,
这种酶就会进入动物的伤口。

当这种蛋白质被
证明具有有害作用

并帮助蛇捕获更多猎物时,

它就受到了青睐。

所以现在胰腺中的基因
在嘴里制造毒液

,杀死蛇的猎物。

还有更多令人难以置信的方法
来制造新基因。

动植物和其他物种的 DNA

包含巨大的片段,没有任何
蛋白质编码基因。

据科学家所知,
它主要是随机

的遗传乱码序列,
没有任何作用。

这些 DNA 片段
有时会发生突变,就像基因一样。

有时,这些突变
会将 DNA 变成

一个细胞可以开始读取它的地方。

突然间,细胞正在制造一种新的蛋白质。

起初,蛋白质可能无用,
甚至有害,

但更多的突变可以
改变蛋白质的形状。

蛋白质可能会开始
做一些有用的

事情,让有机体
更健康、更强壮、

更好地繁殖。

科学家们已经
在动物身体的许多部位发现了这些新基因。

所以我们的 20,000 个基因有许多起源,

从生命的起源,
到仍然从头开始存在的新基因。

只要地球上有生命存在,
它就会制造新的基因。