A concrete idea to reduce CO2 emissions Karen Scrivener

Transcriber: TED Translators Admin
Reviewer: Mirjana Čutura

Concrete is the second
most used substance on earth after water,

and for this reason,

it has a significant environmental impact.

If it were a country, it would rank third
for emissions after China and USA.

But in fact, concrete
is an intrinsically low-impact material

with much lower emissions
of CO2 and energy per ton

than other materials like iron and steel,
even things like bricks.

But because of the enormous
volumes we use overall,

it contributes to about eight percent
of man-made CO2 emissions.

Concrete is an essential material.

We need it to house people,

to build roads, bridges and dams.

So we can’t do without it,

but we can significantly reduce
its carbon footprint.

Concrete is held together by cement.

And cement we use today,
called Portland cement,

is made by heating together a combination
of limestone and clay

at a temperature of 1,450 degrees Celsius.

But in fact, most of the CO2 emissions

come not from the heating,

but from the breakdown of limestone,
which is calcium carbonate,

into calcium oxide
and carbon dioxide, or CO2.

Now we can’t do without
this component altogether,

because nothing else is so efficient
at holding stuff together.

But we can replace
a large proportion of it

with other materials
with lighter carbon footprints.

Many colleagues are looking for solutions.

And here in Switzerland,

we have found that clays produce
very reactive materials

when they’re calcined,

that’s to say heated
to around 800 degrees Celsius,

significantly lower than the 1,450
needed to produce cement.

But more importantly,
there’s no CO2 emissions

from the decomposition of limestone.

We then take this calcined clay,

and we add a bit of limestone –

but this time not heated,
so no CO2 emissions –

and some cement,

and this combination of limestone,
calcined clay and cement, we call LC3.

Now this LC3 here

has the same properties
as Portland cement.

It can be produced
with the same equipment and processes

and used in the same way,

but has up to 40 percent
lower CO2 emissions.

And this was demonstrated in this house
we built near Jhansi in India,

where we could save
more than 15 tons of CO2,

which was 30 to 40 percent
compared to existing materials.

So why isn’t everybody already using LC3?

Well, cement is a local material.

The reason Portland cement is so pervasive

is that it’s produced
from the most abundant materials on Earth

and can be produced in India,

in the United States,
in Ethiopia, almost anywhere.

And we have to work with people locally

to find the best combination
of materials to make LC3.

We have already done
full-scale trials in India and Cuba.

In Colombia, a product
based on this technology

was commercialized a few months ago,

and in the Ivory Coast,

the full-scale plant
is being commissioned to calcine clays.

And many of the world’s
largest cement companies

are looking to introduce this
in some of their plants soon.

So the possibility to replace
Portland cement

with a different material –

but with the same properties,
produced in the same processes

and used in the same way,

but with much lighter carbon footprint –

is really crucial
to confront climate change

because it can be done fast
and it can be done on a very large scale

with the possibility to eliminate

more than 400 million tons
of CO2 every year.

So we can’t do without concrete,

but we can do without a significant amount
of the emissions it produces.

Thank you.

抄写员:TED Translators Admin
Reviewer:Mirjana Čutura

混凝土是
地球上仅次于水的第二大使用物质

,因此,

它对环境有重大影响。

如果它是一个国家,它
的排放量将排在中国和美国之后的第三位。

但事实上,混凝土
本质上是一种低影响材料

,其
每吨二氧化碳排放量和能源

比钢铁等其他材料(甚至砖块等材料)要低得多

但由于
我们整体使用的数量巨大,


占人为二氧化碳排放量的 8% 左右。

混凝土是必不可少的材料。

我们需要它来安置人们

,建造道路、桥梁和水坝。

所以我们不能没有它,

但我们可以显着减少
它的碳足迹。

混凝土由水泥固定在一起。

我们今天使用的水泥,
称为波特兰水泥,

是通过
将石灰石和粘土

的混合物在 1,450 摄氏度的温度下加热制成的。

但事实上,大部分 CO2 排放

不是来自加热,

而是来自石灰石(
即碳酸钙)

分解成氧化钙
和二氧化碳,即 CO2。

现在我们不能完全没有
这个组件,

因为没有其他东西能如此有效
地将东西放在一起。

但是我们可以

用其他
碳足迹更轻的材料来代替其中的很大一部分。

许多同事正在寻找解决方案。

在瑞士,

我们发现粘土在煅烧时会产生
非常活泼的材料

也就是说加热
到 800 摄氏度左右,

远低于
生产水泥所需的 1,450 摄氏度。

但更重要的是,

石灰石的分解不会排放二氧化碳。

然后我们采用这种煅烧粘土,

并添加一些石灰石——

但这次没有加热,
所以没有二氧化碳排放——

和一些水泥,

以及石灰石、
煅烧粘土和水泥的这种组合,我们称之为 LC3。

现在这里的LC3

和波特兰水泥具有相同的特性。

它可以
使用相同的设备和工艺生产

并以相同的方式使用,

但二氧化碳排放量最多可降低 40%

我们在印度占西附近建造的这所房子就证明了这一点

,我们可以节省
超过 15 吨二氧化碳,

与现有材料相比,减少了 30% 到 40%。

那么为什么不是每个人都已经在使用 LC3 呢?

嗯,水泥是当地的材料。

波特兰水泥如此普遍的原因

在于它是
由地球上最丰富的材料制成的,

并且可以在印度

、美国
、埃塞俄比亚以及几乎任何地方生产。

我们必须与当地人

合作,
找到制造 LC3 的最佳材料组合。

我们已经
在印度和古巴进行了全面试验。

在哥伦比亚,
基于这种技术

的产品几个月前已商业化,

而在科特迪瓦,

正在委托这家大型工厂来煅烧粘土。

许多世界上
最大的水泥公司

都希望
尽快在他们的一些工厂中引入这种技术。

因此,

用不同的材料替代波特兰水泥的可能性——

但具有相同的特性,
以相同的工艺生产

并以相同的方式使用,

但碳足迹要轻得多——

对于应对气候变化确实至关重要,

因为它可以 速度
很快,而且可以大规模完成,每年

有可能消除

4 亿
多吨二氧化碳。

所以我们不能没有混凝土,

但我们可以没有
它产生的大量排放。

谢谢你。