A new way to remove CO2 from the atmosphere Jennifer Wilcox

Four hundred parts per million:

that’s the approximate concentration
of CO2 in the air today.

What does this even mean?

For every 400 molecules of carbon dioxide,

we have another million molecules
of oxygen and nitrogen.

In this room today,
there are about 1,800 of us.

Imagine just one of us
was wearing a green shirt,

and you’re asked to find
that single person.

That’s the challenge we’re facing
when capturing CO2

directly out of the air.

Sounds pretty easy,

pulling CO2 out of the air.

It’s actually really difficult.

But I’ll tell you what is easy:

avoiding CO2 emissions to begin with.

But we’re not doing that.

So now what we have to think
about is going back;

pulling CO2 back out of the air.

Even though it’s difficult,
it’s actually possible to do this.

And I’m going to share with you today
where this technology is at

and where it just may be heading
in the near future.

Now, the earth naturally
removes CO2 from the air

by seawater, soils, plants and even rocks.

And although engineers and scientists
are doing the invaluable work

to accelerate these natural processes,

it simply won’t be enough.

The good news is, we have more.

Thanks to human ingenuity,
we have the technology today

to remove CO2 out of the air

using a chemically manufactured approach.

I like to think of this
as a synthetic forest.

There are two basic approaches
to growing or building such a forest.

One is using CO2-grabbing chemicals
dissolved in water.

Another is using solid materials
with CO2-grabbing chemicals.

No matter which approach you choose,
they basically look the same.

So what I’m showing you here
is what a system might look like

to do just this.

This is called an air contactor.

You can see it has to be
really, really wide

in order to have
a high enough surface area

to process all of the air required,

because remember,

we’re trying to capture
just 400 molecules out of a million.

Using the liquid-based
approach to do this,

you take this high surface area
packing material,

you fill the contactor
with the packing material,

you use pumps to distribute liquid
across the packing material,

and you can use fans,
as you can see in the front,

to bubble the air through the liquid.

The CO2 in the air
is separated [by] the liquid

by reacting with the really strong-binding
CO2 molecules in solution.

And in order to capture a lot of CO2,

you have to make this contactor deeper.

But there’s an optimization,

because the deeper
you make that contactor,

the more energy you’re spending
on bubbling all that air through.

So air contactors for direct air capture
have this unique characteristic design,

where they have this huge surface area,
but a relatively thin thickness.

And now once you’ve captured the CO2,

you have to be able to recycle
that material that you used to capture it,

over and over again.

The scale of carbon capture is so enormous

that the capture process
must be sustainable,

and you can’t use a material just once.

And so recycling the material requires
an enormous amount of heat,

because think about it:
CO2 is so dilute in the air,

that material is binding it really strong,

and so you need a lot of heat
in order to recycle the material.

And to recycle the material
with that heat,

what happens is that concentrated CO2
that you got from dilute CO2 in the air

is now released,

and you produce high-purity CO2.

And that’s really important,

because high-purity CO2
is easier to liquify,

easier to transport, whether
it’s in a pipeline or a truck,

or even easier to use directly,

say, as a fuel or a chemical.

So I want to talk a little bit more
about that energy.

The heat required to regenerate
or recycle these materials

absolutely dictates the energy
and the subsequent cost of doing this.

So I ask a question:

How much energy do you think it takes

to remove a million tons
of CO2 from the air

in a given year?

The answer is: a power plant.

It takes a power plant
to capture CO2 directly from the air.

Depending on which approach you choose,

the power plant could be on the order
of 300 to 500 megawatts.

And you have to be careful about
what kind of power plant you choose.

If you choose coal,

you end up emitting more CO2
than you capture.

Now let’s talk about costs.

An energy-intensive version
of this technology

could cost you as much
as $1,000 a ton

just to capture it.

Let’s translate that.

If you were to take that very expensive
CO2 and convert it to a liquid fuel,

that comes out to 50 dollars a gallon.

That’s way too expensive;
it’s not feasible.

So how could we bring these costs down?

That’s, in part, the work that I do.

There’s a company today,
a commercial-scale company,

that can do this as low
as 600 dollars a ton.

There are several other companies
that are developing technologies

that can do this even cheaper than that.

I’m going to talk to you a little bit

about a few of these different companies.

One is called Carbon Engineering.

They’re based out of Canada.

They use a liquid-based
approach for separation

combined with burning
super-abundant, cheap natural gas

to supply the heat required.

They have a clever approach

that allows them to co-capture
the CO2 from the air

and the CO2 that they generate
from burning the natural gas.

And so by doing this,

they offset excess pollution
and they reduce costs.

Switzerland-based Climeworks
and US-based Global Thermostat

use a different approach.

They use solid materials for capture.

Climeworks uses heat from the earth,

or geothermal,

or even excess steam
from other industrial processes

to cut down on pollution and costs.

Global Thermostat
takes a different approach.

They focus on the heat required

and the speed in which it moves
through the material

so that they’re able to release
and produce that CO2

at a really fast rate,

which allows them to have
a more compact design

and overall cheaper costs.

And there’s more still.

A synthetic forest has a significant
advantage over a real forest: size.

This next image that I’m showing you
is a map of the Amazon rainforest.

The Amazon is capable of capturing
1.6 billion tons of CO2 each year.

This is the equivalent
of roughly 25 percent

of our annual emissions in the US.

The land area required
for a synthetic forest

or a manufactured direct air capture plant

to capture the same

is 500 times smaller.

In addition, for a synthetic forest,

you don’t have to build it on arable land,

so there’s no competition
with farmland or food,

and there’s also no reason
to have to cut down any real trees

to do this.

I want to step back,

and I want to bring up the concept
of negative emissions again.

Negative emissions require
that the CO2 separated

be permanently removed
from the atmosphere forever,

which means putting it back underground,

where it came from in the first place.

But let’s face it, nobody
gets paid to do that today –

at least not enough.

So the companies that are developing
these technologies

are actually interested in taking the CO2

and making something useful
out of it, a marketable product.

It could be liquid fuels, plastics

or even synthetic gravel.

And don’t get me wrong –
these carbon markets are great.

But I also don’t want you
to be disillusioned.

These are not large enough
to solve our climate crisis,

and so what we need to do
is we need to actually think about

what it could take.

One thing I’ll absolutely say
is positive about the carbon markets

is that they allow for new
capture plants to be built,

and with every capture plant built,

we learn more.

And when we learn more,

we have an opportunity
to bring costs down.

But we also need to be willing to invest

as a global society.

We could have all of the clever thinking
and technology in the world,

but it’s not going to be enough

in order for this technology
to have a significant impact on climate.

We really need regulation,

we need subsidies,

taxes on carbon.

There are a few of us that would
absolutely be willing to pay more,

but what will be required

is for carbon-neutral,
carbon-negative paths

to be affordable for
the majority of society

in order to impact climate.

In addition to those kinds of investments,

we also need investments
in research and development.

So what might that look like?

In 1966, the US invested about
a half a percent of gross domestic product

in the Apollo program.

It got people safely to the moon

and back to the earth.

Half a percent of GDP today
is about 100 billion dollars.

So knowing that direct air capture

is one front in our fight
against climate change,

imagine that we could invest
20 percent, 20 billion dollars.

Further, let’s imagine
that we could get the costs down

to a 100 dollars a ton.

That’s going to be hard,
but it’s part of what makes my job fun.

And so what does that look like,

20 billion dollars,100 dollars a ton?

That requires us to build
200 synthetic forests,

each capable of capturing
a million tons of CO2 per year.

That adds up to about five percent
of US annual emissions.

It doesn’t sound like much.

Turns out, it’s actually significant.

If you look at the emissions
associated with long-haul trucking

and commercial aircraft,

they add up to about five percent.

Our dependence on liquid fuels
makes these emissions

really difficult to avoid.

So this investment
could absolutely be significant.

Now, what would it take
in terms of land area to do this,

200 plants?

It turns out that they would take up
about half the land area of Vancouver.

That’s if they were fueled by natural gas.

But remember the downside
of natural gas – it also emits CO2.

So if you use natural gas
to do direct air capture,

you only end up capturing
about a third of what’s intended,

unless you have that
clever approach of co-capture

that Carbon Engineering does.

And so if we had an alternative approach

and used wind or solar to do this,

the land area would be
about 15 times larger,

looking at the state of New Jersey now.

One of the things that I think about
in my work and my research

is optimizing and figuring out
where we should put these plants

and think about
the local resources available –

whether it’s land, water,
cheap and clean electricity –

because, for instance,
you can use clean electricity

to split water to produce hydrogen,

which is an excellent, carbon-free
replacement for natural gas,

to supply the heat required.

But I want us to reflect a little bit
again on negative emissions.

Negative emissions should not be
considered a silver bullet,

but they may help us
if we continue to stall

at cutting down on CO2
pollution worldwide.

But that’s also why we have to be careful.

This approach is so alluring
that it can even be risky,

as some may cling onto it as some kind
of total solution to our climate crisis.

It may tempt people to continue
to burn fossil fuels 24 hours a day,

365 days a year.

I argue that we should not
see negative emissions

as a replacement for stopping pollution,

but rather, as an addition to an existing
portfolio that includes everything,

from increased energy efficiency

to low-energy carbon

to improved farming –

will all collectively get us on a path
to net-zero emissions one day.

A little bit of self-reflection:

my husband is an emergency physician.

And I find myself amazed
by the lifesaving work

that he and his colleagues
do each and every day.

Yet when I talk to them
about my work on carbon capture,

I find that they’re equally amazed,

and that’s because combatting
climate change by capturing carbon

isn’t just about saving a polar bear

or a glacier.

It’s about saving human lives.

A synthetic forest may not ever be
as pretty as a real one,

but it could just enable us
to preserve not only the Amazon,

but all of the people

that we love and cherish,

as well as all of our future generations

and modern civilization.

Thank you.

(Applause)

百万分之四百:

这是
当今空气中二氧化碳的大致浓度。

这甚至意味着什么?

每 400 个二氧化碳分子,

我们就有另外 100 万
个氧气和氮气分子。

今天在这个房间里,
大约有 1,800 人。

想象一下,只有我们一个
人穿着一件绿色衬衫,

而你被要求找到
那个单身人士。

这就是我们在

直接从空气中捕获二氧化碳时面临的挑战。

听起来很容易,

从空气中提取二氧化碳。

其实真的很难。

但我会告诉你什么是简单的:

从一开始就避免二氧化碳排放。

但我们不这样做。

所以现在我们要考虑
的是回到过去;

将二氧化碳从空气中拉回。

尽管这很困难,
但实际上是可以做到的。

今天我将与您分享
这项技术的发展

方向
以及在不久的将来它可能会走向何方。

现在,地球

通过海水、土壤、植物甚至岩石自然地从空气中去除二氧化碳。

尽管工程师和科学家们
正在做宝贵的工作

来加速这些自然过程,

但这还远远不够。

好消息是,我们还有更多。

由于人类的聪明才智,
我们今天拥有使用化学制造方法

从空气中去除二氧化碳的技术

我喜欢把它想象
成一个合成森林。

种植或建造这样的森林有两种基本方法。

一种是使用溶解在水中的吸收二氧化碳的化学物质

另一种是使用固体材料
和吸收二氧化碳的化学物质。

无论您选择哪种方法,
它们看起来基本相同。

因此,我在这里向您展示的
是系统可能

会执行此操作的样子。

这称为空气接触器。

你可以看到它必须
非常非常宽

,才能有
足够高的表面积

来处理所需的所有空气,

因为请记住,

我们试图
从一百万个分子中仅捕获 400 个。

使用基于液体的
方法来做到这一点

,采用这种高表面积
填料

,用填料填充接触器

,使用泵将液体分配
到填料上

,还可以使用风扇,
如您在 前面,

使空气通过液体起泡。

空气中的二氧化碳

通过与溶液中真正具有强结合力的二氧化碳分子反应而被液体分离

为了捕获大量的二氧化碳,

你必须让这个接触器更深。

但是有一个优化,

因为
你把接触器做得

越深,你花在让
所有空气冒泡上的能量就越多。

因此,用于直接空气捕获的空气接触器
具有这种独特的特征设计

,它们具有巨大的表面积,
但厚度却相对较薄。

现在,一旦你捕获了二氧化碳,

你就必须能够一次又一次地回收
你用来捕获它的材料

碳捕获的规模如此之大

,以至于捕获过程
必须是可持续的,

而且您不能只使用一次材料。

所以回收材料
需要大量的热量,

因为想一想:
二氧化碳在空气中是如此稀释,

这种材料对它的结合力非常强

,所以你需要大量的
热量来回收材料。

为了利用这种热量回收材料

,你从空气中稀释的二氧化碳中得到的浓缩二氧化碳

现在被释放出来

,你生产出高纯度的二氧化碳。

这非常重要,

因为高纯度二氧化碳
更容易液化,

更容易运输,
无论是在管道还是卡车中,

甚至更容易直接

用作燃料或化学品。

所以我想多
谈谈这种能量。

再生
或回收这些材料所需的热量

绝对决定了
这样做的能量和随后的成本。

所以我问了一个问题:

你认为在某一年从空气

中去除 100
万吨二氧化碳需要多少能量

答案是:发电厂。

直接从空气中捕获二氧化碳需要一座发电厂。

根据您选择的方法

,发电厂的功率可能
在 300 到 500 兆瓦之间。

你必须小心
你选择什么样的发电厂。

如果你选择煤炭,

你最终排放的二氧化碳
比你捕获的要多。

现在让我们谈谈成本。 这项技术

的能源密集型版本

可能要
花费每吨 1,000 美元

才能捕获它。

让我们翻译一下。

如果您将非常昂贵的
二氧化碳转化为液体燃料,

则每加仑成本为 50 美元。

那太贵了;
这是不可行的。

那么我们如何才能降低这些成本呢?

这部分是我所做的工作。

今天有一家公司,
一家商业规模的公司

,可以
低至每吨 600 美元。

还有其他几家
公司正在开发

比这更便宜的技术。

我将与您

谈谈其中一些不同的公司。

一种叫做碳工程。

他们总部设在加拿大以外。

他们使用基于液体
的分离方法,

结合燃烧
超丰富、廉价的天然气

来提供所需的热量。

他们有一个聪明的方法

,可以让他们共同捕获
空气

中的二氧化碳和
燃烧天然气产生的二氧化碳。

因此,通过这样做,

它们可以抵消过多的污染
并降低成本。

瑞士的 Climeworks
和美国的 Global Thermostat

使用不同的方法。

他们使用固体材料进行捕获。

Climeworks 使用来自地球的热量、

地热,甚至

来自其他工业过程的多余蒸汽

来减少污染和成本。

Global Thermostat
采用了不同的方法。

他们专注于所需的热量

及其通过材料的速度,

以便他们能够

以非常快的速度释放和产生二氧化碳,

这使他们能够
拥有更紧凑的设计

和更便宜的整体成本。

还有更多。

与真实森林相比,合成森林具有显着
优势:大小。

我向您展示的下一张图片
是亚马逊热带雨林的地图。

亚马逊每年能够捕获
16 亿吨二氧化碳。

相当于我们在美国每年排放量的大约 25%。

合成森林

或制造的直接空气捕获

工厂捕获相同

的土地所需的土地面积要小 500 倍。

另外,人工林

不需要在耕地上建造,不存在

与农田、粮食的竞争,


没有必要砍伐真正的树木

来做到这一点。

我想退后一步

,我想再次提出
负排放的概念。

负排放要求
分离出的二氧化碳

永远从大气中永久清除,

这意味着将其放回地下,

它最初来自哪里。

但让我们面对现实吧,今天没有人
为此获得报酬——

至少还不够。

因此,开发
这些技术

的公司实际上对吸收二氧化碳

并从中制造出有用
的东西,一种适销对路的产品感兴趣。

它可能是液体燃料、塑料

甚至合成砾石。

别误会我的意思——
这些碳市场很棒。

但我也不希望
你幻灭。

这些还
不足以解决我们的气候危机

,所以我们需要做的
是我们需要真正考虑

一下它可能需要什么。 对于碳市场,

我绝对要说的一件事
是积极的

,那就是它们允许建造新的
捕集厂,

并且随着每一座捕集厂的建成,

我们会学到更多。

当我们了解更多时,

我们就有
机会降低成本。

但我们也需要愿意

作为一个全球社会进行投资。

我们可以拥有世界上所有聪明的思维
和技术,

但这还

不足以让这项技术
对气候产生重大影响。

我们真的需要监管,

我们需要补贴和

碳税。

我们中的一些人
绝对愿意支付更多费用,

但为了影响气候,我们需要的

是让大多数社会都能负担得起碳中和、
碳负的路径

除了这些类型的投资,

我们还需要
在研发方面的投资。

那会是什么样子呢?

1966 年,美国将
国内生产总值的 0.5%

用于阿波罗计划。

它让人们安全地登上月球

并返回地球。

今天GDP的0.5%
约为1000亿美元。

因此,知道直接空气捕获

是我们
应对气候变化的一个战线,

想象一下我们可以投资
20%,即 200 亿美元。

此外,让我们想象
一下,我们可以将成本降低

到每吨 100 美元。

这会很难,
但这是让我的工作变得有趣的一部分。

那么这看起来像什么,

200 亿美元,100 美元一吨?

这需要我们建造
200 片人造森林,

每片森林每年能够
捕获 100 万吨二氧化碳。


相当于美国年排放量的约 5%。

听起来并不多。

事实证明,这实际上很重要。

如果您查看
与长途卡车运输

和商用飞机相关的排放,

它们加起来约为 5%。

我们对液体燃料的依赖
使得这些排放

真的很难避免。

因此,这项
投资绝对意义重大。

现在,
就土地面积而言,

200 株植物需要多少?

事实证明,他们将占据
温哥华大约一半的土地面积。

那就是如果他们用天然气作为燃料。

但请记住
天然气的缺点——它也会排放二氧化碳。

因此,如果您使用
天然气进行直接空气捕获,

您最终只能捕获
大约三分之一的预期目标,

除非您拥有 Carbon Engineering 所做的那种
巧妙的共同捕获方法

因此,如果我们有另一种方法

并使用风能或太阳能来做到这一点,

那么土地面积将
扩大 15 倍左右,

看看现在的新泽西州。

我在工作和研究中考虑的一件事

是优化和
弄清楚我们应该把这些植物放在哪里,


考虑当地可用的资源——

无论是土地、水、
廉价和清洁的电力——

因为,例如 ,
您可以使用清洁

电力将水分解以产生氢气,

这是一种极好的、无碳的
天然气替代品,

可提供所需的热量。

但我希望我们再次反思一下
负排放。

负排放不应被
视为灵丹妙药,


如果我们继续

在减少全球二氧化碳
污染方面停滞不前,它们可能会对我们有所帮助。

但这也是我们必须小心的原因。

这种方法非常诱人
,甚至可能存在风险,

因为有些人可能会坚持将其视为
气候危机的某种全面解决方案。

它可能会诱使人们一年 365
天、每天 24 小时继续燃烧化石燃料

我认为,我们不应该
将负排放

视为阻止污染的替代品,

而是作为现有
投资组合的补充,包括

从提高能源效率

到低能源碳

再到改进农业的

所有方面——所有这些都将使我们继续前进
有朝一日实现净零排放的途径。

一点点自我反省:

我的丈夫是一名急诊医师。

我发现自己

对他和他的同事
每天所做的拯救生命的工作感到惊讶。

然而,当我与他们
谈论我在碳捕获方面的工作时,

我发现他们同样感到惊讶

,这是因为
通过捕获碳来应对气候变化

不仅仅是拯救北极熊

或冰川。

这是关于拯救人类的生命。

人造森林可能永远不会
像真实的那样美丽,

但它不仅可以让
我们保护亚马逊,还可以保护

我们所爱和珍惜的所有人民,

以及我们所有的后代

和现代文明。

谢谢你。

(掌声)