What can Schrdingers cat teach us about quantum mechanics Josh Samani

Consider throwing a ball
straight into the air.

Can you predict the motion
of the ball after it leaves your hand?

Sure, that’s easy.

The ball will move upward
until it gets to some highest point,

then it will come back down
and land in your hand again.

Of course, that’s what happens,

and you know this because you have
witnessed events like this countless times.

You’ve been observing the physics
of everyday phenomena your entire life.

But suppose we explore a question
about the physics of atoms,

like what does the motion of an electron

around the nucleus of a
hydrogen atom look like?

Could we answer that question based on
our experience with everyday physics?

Definietly not. Why?

Because the physics that governs the
behavior of systems at such small scales

is much different than the physics
of the macroscopic objects

you see around you all the time.

The everyday world you know and love

behaves according to the laws
of classical mechanics.

But systems on the scale of atoms

behave according to the laws
of quantum mechanics.

This quantum world turns out to be
a very strange place.

An illustration of quantum strangeness
is given by a famous thought experiment:

Schrödinger’s cat.

A physicist, who doesn’t particularly
like cats, puts a cat in a box,

along with a bomb that has a 50% chance
of blowing up after the lid is closed.

Until we reopen the lid,
there is no way of knowing

whether the bomb exploded or not,

and thus, no way of knowing
if the cat is alive or dead.

In quantum physics,
we could say that before our observation

the cat was in a superposition state.

It was neither alive nor dead but
rather in a mixture of both possibilities,

with a 50% chance for each.

The same sort of thing happens
to physical systems at quantum scales,

like an electron orbiting
in a hydrogen atom.

The electron isn’t really orbiting at all.

It’s sort of everywhere in space,
all at once,

with more of a probability of being
at some places than others,

and it’s only after
we measure its position

that we can pinpoint where it is
at that moment.

A lot like how we didn’t know
whether the cat was alive or dead

until we opened the box.

This brings us to the strange
and beautiful phenomenon

of quantum entanglement.

Suppose that instead of one cat in a box,
we have two cats in two different boxes.

If we repeat the Schrödinger’s cat experiment
with this pair of cats,

the outcome of the experiment
can be one of four possibilities.

Either both cats will be alive,
or both will be dead,

or one will be alive
and the other dead, or vice versa.

The system of both cats
is again in a superposition state,

with each outcome having a 25% chance
rather than 50%.

But here’s the cool thing:

quantum mechanics tells us
it’s possible to erase

the both cats alive and both cats dead
outcomes from the superposition state.

In other words,
there can be a two cat system,

such that the outcome will always be
one cat alive and the other cat dead.

The technical term for this is that the
states of the cats are entangled.

But there’s something truly mindblowing
about quantum entanglement.

If you prepare the system of two cats
in boxes in this entangled state,

then move the boxes to opposite
ends of the universe,

the outcome of the experiment
will still always be the same.

One cat will always come out alive,
and the other cat will always end up dead,

even though which particular cat
lives or dies is completely undetermined

before we measure the outcome.

How is this possible?

How is it that the states of cats
on opposite sides of the universe

can be entangled in this way?

They’re too far away to communicate
with each other in time,

so how do the two bombs always
conspire such that

one blows up and the other doesn’t?

You might be thinking,

“This is just some theoretical
mumbo jumbo.

This sort of thing can’t happen
in the real world.”

But it turns out that quantum entanglement

has been confirmed in
real world lab experiments.

Two subatomic particles entangled
in a superposition state,

where if one spins one way
then the other must spin the other way,

will do just that,
even when there’s no way

for information to pass
from one particle to the other

indicating which way to spin
to obey the rules of entanglement.

It’s not surprising then that
entanglement is at the core

of quantum information science,

a growing field studying how to use
the laws of the strange quantum world

in our macroscopic world,

like in quantum cryptography, so spies
can send secure messages to each other,

or quantum computing,
for cracking secret codes.

Everyday physics may start to look
a bit more like the strange quantum world.

Quantum teleportation
may even progress so far,

that one day your cat will
escape to a safer galaxy,

where there are no physicists
and no boxes.

考虑将球
直接抛向空中。

你能预测
球离开你手后的运动吗?

当然,这很容易。

球会向上移动,
直到达到某个最高点,

然后它会回落
并再次落在您的手中。

当然,这就是发生的事情

,你知道这一点,因为你
无数次目睹了这样的事件。

你一生都在观察
日常现象的物理学。

但是假设我们探索一个
关于原子物理的问题,

比如电子

围绕
氢原子核的运动是什么样的?

我们能否根据
我们对日常物理学的经验来回答这个问题?

绝对不是。 为什么?

因为
在如此小的尺度上控制系统行为

的物理学

你一直在周围看到的宏观物体的物理学有很大不同。

您所了解和喜爱的日常世界

按照
经典力学定律运行。

但是原子尺度的系统

按照
量子力学定律运行。

这个量子世界原来是
一个非常奇怪的地方。

一个著名的思想实验给出了量子奇异性的一个例子

薛定谔的猫。

一位并不特别
喜欢猫的物理学家,将一只猫放在一个盒子里,

连同一颗
在盖子合上后有 50% 几率爆炸的炸弹。

在我们重新打开盖子之前
,无法知道

炸弹是否爆炸

,因此无法
知道猫是死是活。

在量子物理学中,
我们可以说在我们观察之前

猫处于叠加态。

它既不是活的也不是死的,
而是两种可能性的混合体,

每种可能性都有 50%。

同样的事情也发生
在量子尺度的物理系统上,

比如
在氢原子中运行的电子。

电子根本没有真正在轨道上运行。

它在太空中无处不
在,

同时出现
在某些地方的可能性比其他地方大

,只有在
我们测量它的位置

之后,我们才能确定它
当时的位置。

很像我们直到打开盒子才
知道猫是死是活

这给我们带来了量子纠缠这个奇怪
而美丽的现象

假设我们不是在一个盒子里放一只猫,
而是在两个不同的盒子里放了两只猫。

如果我们
用这对猫重复薛定谔的猫实验,

实验的结果
可能是四种可能性之一。

要么两只猫都活着,要么两只猫
都死了,

或者一只
活着另一只死了,反之亦然。

两只猫的系统
再次处于叠加状态

,每种结果都有 25% 的机会
而不是 50%。

但这是很酷的事情:

量子力学告诉我们
,有可能从叠加状态中

消除两只猫都活着和两只猫都死了的
结果。

换句话说,
可以有一个两只猫的系统,

这样结果总是
一只猫活着,另一只猫死了。

对此的技术术语是
猫的状态是纠缠的。

但是关于量子纠缠确实有一些令人兴奋的地方

如果你
在这种纠缠态的盒子里准备两只猫的系统,

然后将盒子移动到
宇宙的两端,

实验的结果
仍然总是一样的。

一只猫总是会活着出来,
而另一只猫总是会死去,

即使

在我们衡量结果之前完全不确定哪只猫的生死。

这怎么可能? 宇宙对立面

的猫的状态,怎么会这样

纠缠呢?

他们距离太远,无法
及时沟通,

那么两颗炸弹怎么总是
合谋,

一个爆炸,另一个不爆炸?

你可能会想,

“这只是一些理论上的
胡说八道。

这种事情
在现实世界中是不可能发生的。”

但事实证明,量子纠缠

已在
现实世界的实验室实验中得到证实。

两个以叠加态纠缠的亚原子粒子

如果一个以一种方式旋转,
那么另一个必须以另一种方式旋转


即使

信息无法
从一个粒子传递到另一个粒子,也无法

指示旋转
方向 遵守纠缠规则。

因此,纠缠是量子信息科学的核心也就不足为奇了,这

一个不断发展的领域,研究如何在我们的宏观世界中使用
奇怪的量子世界的规律

就像在量子密码学中一样,所以间谍
可以相互发送安全信息,

或者 量子计算,
用于破解密码。

日常物理学可能开始看起来
有点像奇怪的量子世界。

量子隐形传态
甚至可能进展到现在,

有一天你的猫会
逃到一个更安全的星系,

那里没有物理学家
,也没有盒子。