Cell membranes are way more complicated than you think Nazzy Pakpour

Cell membranes are structures
of contradictions.

These oily films are hundreds of times
thinner than a strand of spider silk,

yet strong enough to protect
the delicate contents of life:

the cell’s watery cytoplasm,
genetic material, organelles,

and all the molecules it needs to survive.

How does the membrane work,
and where does that strength come from?

First of all, it’s tempting to think of a
cell membrane

like the tight skin of a balloon,

but it’s actually something
much more complex.

In reality, it’s constantly in flux,

shifting components back and forth
to help the cell take in food,

remove waste,

let specific molecules in and out,

communicate with other cells,

gather information about the environment,

and repair itself.

The cell membrane gets this resilience,
flexibility, and functionality

by combining a variety
of floating components

in what biologists call a fluid mosaic.

The primary component of the fluid mosaic

is a simple molecule
called a phospholipid.

A phospholipid has a polar,
electrically-charged head,

which attracts water,

and a non-polar tail, which repels it.

They pair up tail-to-tail
in a two layer sheet

just five to ten nanometers thick
that extends all around the cell.

The heads point in towards the cytoplasm

and out towards the watery fluid
external to the cell

with the lipid tails
sandwiched in between.

This bilayer, which at body temperature
has the consistency of vegetable oil,

is studded with other types of molecules,

including proteins,

carbohydrates,

and cholesterol.

Cholesterol keeps the membrane
at the right fluidity.

It also helps regulate communication
between cells.

Sometimes, cells talk to each other

by releasing and capturing
chemicals and proteins.

The release of proteins is easy,

but the capture of them
is more complicated.

That happens through a process called
endocytosis

in which sections of the membrane
engulf substances

and transport them into the cell
as vesicles.

Once the contents have been released,

the vesicles are recycled and returned
to the cell membrane.

The most complex components
of the fluid mosaic are proteins.

One of their key jobs is to make sure

that the right molecules
get in and out of the cell.

Non-polar molecules, like oxygen,

carbon dioxide,

and certain vitamins

can cross the phospholipid
bilayer easily.

But polar and charged molecules can’t
make it through the fatty inner layer.

Transmembrane proteins stretch
across the bilayer to create channels

that allow specific molecules through,
like sodium and potassium ions.

Peripheral proteins floating
in the inner face of the bilayer

help anchor the membrane to the cell’s
interior scaffolding.

Other proteins in cell membranes
can help fuse two different bilayers.

That can work to our benefit,
like when a sperm fertilizes an egg,

but also harm us,
as it does when a virus enters a cell.

And some proteins move within
the fluid mosaic,

coming together to form complexes
that carry out specific jobs.

For instance, one complex might
activate cells in our immune system,

then move apart when the job is done.

Cell membranes are also the site
of an ongoing war

between us and all the things
that want to infect us.

In fact, some of the most toxic
substances we know of

are membrane-breaching proteins
made by infectious bacteria.

These pore-forming toxins poke
giant holes in our cell membranes,

causing a cell’s contents to leak out.

Scientists are working on developing
ways to defend against them,

like using a nano-sponge
that saves our cells

by soaking up
the membrane-damaging toxins.

The fluid mosaic is what makes
all the functions of life possible.

Without a cell membrane,
there could be no cells,

and without cells,
there would be no bacteria,

no parasites,

no fungi,

no animals,

and no us.

细胞膜
是矛盾的结构。

这些油性薄膜
比蜘蛛丝薄数百倍,

但强度足以保护
生命的微妙内容

:细胞的水样细胞质、
遗传物质、细胞器

以及它生存所需的所有分子。

膜是如何工作的
,这种力量从何而来?

首先,人们很容易将
细胞膜

想象成气球的紧密皮肤,

但实际上它
要复杂得多。

实际上,它一直在不断变化

,来回转换成分
以帮助细胞吸收食物、

清除废物、

让特定分子进出、

与其他细胞交流、

收集有关环境的信息

并进行自我修复。

细胞膜

通过

在生物学家所谓的流体镶嵌中结合各种浮动组件来获得这种弹性、灵活性和功能性。

流体镶嵌的主要成分

是一种称为磷脂的简单分子

磷脂有一个
带电荷的极性头部,

可以吸引水,

还有一个非极性的尾部,可以排斥水。

它们
在一个

只有五到十纳米厚
的两层薄片中尾对尾配对,在细胞周围延伸。

头部指向细胞质

,指向细胞外部的水状液体

,脂质尾部
夹在中间。

这种双层在体温下
具有植物油的稠度

,其中布满了其他类型的分子,

包括蛋白质、

碳水化合物

和胆固醇。

胆固醇使膜
保持适当的流动性。

它还有助于调节
细胞之间的交流。

有时,细胞

通过释放和捕获
化学物质和蛋白质来相互交谈。

蛋白质的释放很容易,

但它们的捕获
更为复杂。

这是通过一个称为内吞作用的过程发生的,在这个过程

中,膜的部分
吞噬物质

并将它们作为囊泡运输到细胞
中。

一旦内容物被释放

,囊泡就会被回收并
返回细胞膜。

流体镶嵌最复杂的成分
是蛋白质。

他们的一项关键工作是

确保正确的分子
进出细胞。

非极性分子,如氧气、

二氧化碳

和某些维生素

可以轻松穿过磷脂
双层。

但是极性和带电分子
不能通过脂肪内层。

跨膜蛋白
跨越双层,形成

允许特定分子通过的通道,
如钠离子和钾离子。

漂浮
在双层内表面的外周蛋白

有助于将膜固定在细胞的
内部支架上。

细胞膜中的其他蛋白质
可以帮助融合两个不同的双层。

这可以使我们受益,
例如当精子使卵子受精时,

但也会伤害我们,
就像病毒进入细胞时一样。

一些蛋白质在流体镶嵌物中移动

聚集在一起形成
执行特定工作的复合物。

例如,一种复合物可能会
激活我们免疫系统中的细胞,

然后在工作完成后分开。

细胞膜也是

我们与所有
想要感染我们的事物之间持续战争的场所。

事实上,
我们所知道的

一些最具毒性的物质是
由传染性细菌制造的破膜蛋白。

这些成孔毒素会
在我们的细胞膜上戳出巨大的洞,

导致细胞内容物泄漏出来。

科学家们正在研究
防御它们的方法,

例如使用纳米海绵

通过
吸收破坏细胞膜的毒素来拯救我们的细胞。

流体马赛克使
生命的所有功能成为可能。

没有细胞膜
就没有细胞,没有细胞

就没有细菌、

寄生虫

、真菌

、动物

和我们。