How do you know if you have a virus Cella Wright

A new virus emerges
and spreads like wildfire.

In order to contain it,

researchers must first collect data
about who’s been infected.

Two main viral testing techniques
are critical:

one tells you if you have the virus

and the other shows
if you’ve already had it.

So, how exactly do these tests work?

PCR, or polymerase chain
reaction testing,

targets the virus’s genetic material
in the body

and is used to diagnose someone
who is currently infected.

Yet, this genetic material may be present
in such imperceptible amounts

that actually detecting it is difficult.

This is where PCR comes in:

it’s widely used to amplify genetic
information to large enough quantities

that it can be readily observed.

To develop a PCR test
for a never-before-seen virus,

researchers first sequence
its genetic material, or genome,

and identify regions that are unique
to that specific virus.

PCR then targets
these particular segments.

A PCR test begins by collecting a sample:

this can be blood for hepatitis viruses,
feces for poliovirus,

and samples from the nose or throat
for coronaviruses.

The sample is taken
to a central laboratory

where PCR is performed to test
for the presence of the virus’ genome.

Genetic information can be encoded
via DNA or RNA.

HPV, for example, uses DNA,
while SARS-CoV-2, the cause of COVID-19,

uses RNA.

Before running the PCR,
the viral RNA— if present—

must be reverse transcribed
to make a strand of complementary DNA.

Researchers then run the PCR.

If the virus is present in the sample,
its unique regions of genetic code

will be identified by complementary
primers and copied by enzymes.

One strand of DNA becomes
hundreds of millions,

which are detected using probes marked
with fluorescent dye.

If the PCR machine senses fluorescence,

the sample has tested positive
for the virus,

meaning the individual is infected.

Immunoassays, on the other hand,

tap into the immune system’s
memory of the virus,

showing if someone has previously
been infected.

They work by targeting virus-specific
antibodies generated by the immune system

during infection.

These are specialized classes of proteins

that identify and fight foreign
substances, like viruses.

Immunoassays may detect IgG antibodies,
the most abundant class,

and IgM antibodies, the type that’s first
produced in response to a new infection.

The presence of IgM antibodies suggests
a recent infection,

but since it can take the body over
a week to produce a detectable amount,

they’re unreliable in diagnosing
current infections.

Meanwhile, IgG antibodies circulate
for an extended period after infection;

their presence usually indicates
that someone was exposed and recovered.

Before the immunoassay,

health professionals draw blood
from an individual.

This sample then comes into contact
with a portion of the virus of interest.

If the body has, in fact, been exposed
to the virus in the past,

the body’s virus-specific antibodies
will bind to it during the test.

This reaction produces a change in color,
indicating that the sample tested positive

and that the individual has been
exposed to the virus.

Immunoassays are especially important

when it comes to retroactively
diagnosing people

who were infected but went untested.

And there’s exciting potential for those
who have developed immunity to a virus:

in some cases, their blood plasma
could be used as treatment

in people who are currently fighting it.

PCR and immunoassays are always
in the process

of becoming more accurate and efficient.

For example,

innovations in PCR have led to the use
of self-contained testing devices

that relay results within one hour.

Digital PCR, which quantifies individual
pieces of target DNA,

shows promise in further
boosting accuracy.

And although immunoassays are difficult
to develop quickly,

researchers in Singapore were able
to create one for SARS-CoV-2

even before COVID-19 was declared
a pandemic.

These tests— along with the scientists
who develop them

and the health professionals
who administer them—

are absolutely essential.

And when deployed early,
they can save millions of lives.

一种新的病毒出现
并像野火一样蔓延。

为了控制它,

研究人员必须首先收集
有关谁被感染的数据。

两种主要的病毒检测
技术至关重要:

一种告诉您是否感染了病毒

,另一种显示
您是否已经感染。

那么,这些测试究竟是如何工作的呢?

PCR,或聚合酶链
反应测试,

针对病毒在体内的遗传物质

,用于诊断
目前感染的人。

然而,这种遗传物质可能
以难以察觉的量存在

,以至于难以实际检测到它。

这就是 PCR 的用武之地:

它被广泛用于将遗传
信息放大到足够大的数量

,以便于观察。

为了开发
一种前所未见的病毒的 PCR 测试,

研究人员首先
对其遗传物质或基因组进行测序,

并确定该特定病毒独有的区域

然后 PCR 以
这些特定片段为目标。

PCR 测试从收集样本开始:

这可以是血液中的肝炎病毒、
粪便中的脊髓灰质炎病毒

以及来自鼻子或喉咙的样本中
的冠状病毒。

样本被
带到中心实验室

,在那里进行 PCR 以测试
病毒基因组的存在。

遗传信息可以
通过 DNA 或 RNA 编码。

例如,HPV 使用 DNA
,而导致 COVID-19 的 SARS-CoV-2

使用 RNA。

在运行 PCR 之前
,病毒 RNA(如果存在)

必须被逆转录
以形成一条互补的 DNA 链。

然后研究人员运行 PCR。

如果样本中存在病毒,
其独特的遗传密码区域

将被互补
引物识别并被酶复制。

一条 DNA 链变成
数亿条

,使用标记
有荧光染料的探针进行检测。

如果 PCR 机器检测到荧光,

则样本的病毒检测呈阳性

这意味着该个体已被感染。

另一方面,免疫分析

利用免疫系统
对病毒的记忆,

显示某人以前是否
被感染过。

它们通过靶向
免疫系统在感染期间产生的病毒特异性抗体来发挥作用

这些

是识别和对抗外来
物质(如病毒)的特殊蛋白质类别。

免疫测定可以检测
最丰富的 IgG 抗体

和 IgM 抗体,这是
针对新感染而首先产生的类型。

IgM 抗体的存在
表明最近有感染,

但由于身体可能
需要一周多的时间才能产生可检测的量,

因此它们在诊断当前感染方面是不可靠的

同时,IgG抗体
在感染后循环较长时间;

他们的存在通常
表明有人被暴露并康复。

在进行免疫测定之前,

卫生专业人员会
从个体身上抽血。

然后该样本
与感兴趣的病毒的一部分接触。

事实上,如果身体过去曾
接触过病毒,

那么身体的病毒特异性
抗体将在测试期间与其结合。

这种反应会产生颜色变化,
表明样本检测呈阳性

并且该个体已
接触过病毒。

在追溯
诊断

被感染但未经检测的人时,免疫分析尤其重要。

对于
那些对病毒产生免疫力的人来说,这具有令人兴奋的潜力:

在某些情况下,他们的血浆
可用于治疗

目前正在与病毒作斗争的人。

PCR 和免疫分析总是

变得更加准确和高效的过程中。

例如,

PCR 的创新导致使用

能够在一小时内传递结果的独立测试设备。

量化单个
目标 DNA 片段的数字 PCR

显示出进一步
提高准确性的前景。

尽管免疫分析很难
快速发展,但

新加坡的研究人员

甚至在 COVID-19 被宣布
为大流行之前就能够为 SARS-CoV-2 创造一种。

这些测试——以及开发它们的科学家


管理它们的卫生专业人员——

是绝对必要的。

如果及早部署,
它们可以挽救数百万人的生命。