Michael Levin The electrical blueprints that orchestrate life TED

Chris Anderson: Mike, welcome.

It’s good to see you.
I’m excited for this conversation.

Michael Levin: Thank you so much.
I’m so happy to be here.

CA: So, most of us have
this mental model in biology

that DNA is a property
of every living thing,

that it is kind of the software
that builds the hardware of our body.

That’s how a lot of us think about this.

That model leaves too many deep mysteries.

Can you share with us
some of those mysteries

and also what tadpoles have to do with it?

ML: Sure. Yeah.

I’d like to give you another
perspective on this problem.

One of the things that DNA does
is specify the hardware of each cell.

So the DNA tells every cell
what proteins it’s supposed to have.

And so when you have
tadpoles, for example,

you see the kind of thing

that most people think is sort of
a progressive unrolling of the genome.

Specific genes turn on and off,

and a tadpole, as it becomes a frog,

has to rearrange its face.

So the eyes, the nostrils, the jaws –
everything has to move.

And one way to think about it
used to be that, well,

you have a sort of hardwired
set of movements

where all of these things move around
and then you get your frog.

But actually, a few years ago,
we found a pretty amazing phenomenon,

which is that if you make
so-called “Picasso frogs” –

these are tadpoles where the jaws
might be off to the side,

the eyes are up here,
the nostrils are moved,

so everything is shifted –

these tadpoles make
largely normal frog faces.

Now, this is amazing,

because all of the organs
start off in abnormal positions,

and yet they still end up making
a pretty good frog face.

And so what it turns out
is that this system,

like many living systems,

is not a hardwired set of movements,

but actually works to reduce the error
between what’s going on now

and what it knows is a correct
frog face configuration.

This kind of decision-making

that involves flexible responses
to new circumstances,

in other contexts,
we would call this intelligence.

And so what we need to understand now
is not only the mechanisms

by which these cells
execute their movements

and gene expression and so on,

but we really have to understand
the information flow:

How do these cells
cooperate with each other

to build something large
and to stop building

when that specific structure is created?

And these kinds of computations,
not just the mechanisms,

but the computations
of anatomical control,

are the future of biology.

CA: And so I guess the traditional model

is that somehow cells are sending
biochemical signals to each other

that allow that development
to happen the smart way.

But you think there is
something else at work.

What is that?

ML: Well, cells certainly do communicate
biochemically and via physical forces,

but there’s something else going on
that’s extremely interesting,

and it’s basically called bioelectricity,

non-neural bioelectricity.

So it turns out that all cells –

not just nerves,
but all cells in your body –

communicate with each other
using electrical signals.

And what you’re seeing here
is a time-lapse video.

For the first time,

we are now able to eavesdrop
on all of the electrical conversations

that the cells are having with each other.

So think about this.

We’re now watching –

This is an early frog embryo.

This is about eight hours
to 10 hours of development.

And the colors are showing you
actual electrical states

that allow you to see
all of the electrical software

that’s running on the genome-defined
cellular hardware.

And so these cells are basically
communicating with each other

who is going to be head,
who is going to be tail,

who is going to be left and right
and make eyes and brain and so on.

And so it is this software

that allows these living systems
to achieve specific goals,

goals such as building an embryo

or regenerating a limb
for animals that do this,

and the ability to see
these electrical conversations

gives us some really
remarkable opportunities

to target or to rewrite
the goals towards which

these living systems are operating.

CA: OK, so this is pretty radical.

Let me see if I understand this.

What you’re saying is that
when an organism starts to develop,

as soon as a cell divides,

electrical signals are shared
between them.

But as you get to, what,
a hundred, a few hundred cells,

that somehow these signals end up forming
essentially like a computer program,

a program that somehow includes
all the information needed

to tell that organism

what its destiny is?

Is that the right way to think about it?

ML: Yes, quite.

Basically, what happens
is that these cells,

by forming electrical networks
much like networks in the brain,

they form electrical networks,

and these networks process information
including pattern memories.

They include representation
of large-scale anatomical structures

where various organs will go,

what the different axes of the animal –
front and back, head and tail –

are going to be,

and these are literally
held in the electrical circuits

across large tissues

in the same way that brains
hold other kinds of memories and learning.

CA: So is this the right way
to think about it?

Because this seems to be such a big shift.

I mean, when I first got a computer,

I was in awe of the people
who could do so-called “machine code,”

like the direct programming
of individual bits in the computer.

That was impossible for most mortals.

To have a chance
of controlling that computer,

you’d have to program in a language,

which was a vastly simpler way
of making big-picture things happen.

And if I understand you right,

what you’re saying is that most of biology
today has sort of taken place

trying to do the equivalent
of machine code programming,

of understanding the biochemical signals
between individual cells,

when, wait a sec, holy crap,
there’s this language going on,

this electrical language,
which, if you could understand that,

that would give us a completely
different set of insights

into how organisms are developing.

Is that metaphor basically right?

ML: Yeah, this is exactly right.

So if you think about the way
programming was done in the ’40s,

in order to get your computer
to do something different,

you would physically
have to shift the wires around.

So you’d have to go in there
and rewire the hardware.

You’d have to interact
with the hardware directly,

and all of your strategies
for manipulating that machine

would be at the level of the hardware.

And the reason we have
this now amazing technology revolution,

information sciences and so on,

is because computer science moved
from a focus on the hardware

on to understanding that if
your hardware is good enough –

and I’m going to tell you that biological
hardware is absolutely good enough –

then you can interact with your system
not by tweaking or rewiring the hardware,

but actually, you can take a step back
and give it stimuli or inputs

the way that you would give
to a reprogrammable computer

and cause the cellular network
to do something completely different

than it would otherwise have done.

So the ability to see
these bioelectrical signals

is giving us an entry point
directly into the software

that guides large-scale anatomy,

which is a very different
approach to medicine

than to rewiring specific pathways
inside of every cell.

CA: And so in many ways,
this is the amazingness of your work

is that you’re starting to crack the code
of these electrical signals,

and you’ve got an amazing
demonstration of this

in these flatworms.

Tell us what’s going on here.

ML: So this is a creature
known as a planarian.

They’re flatworms.

They’re actually quite a complex creature.

They have a true brain,
lots of different organs and so on.

And the amazing thing about these planaria

is that they are highly,
highly regenerative.

So if you cut it into pieces –
in fact, over 200 pieces –

every piece will rebuild
exactly what’s needed

to make a perfect little worm.

So think about that.

This is a system where every single piece

knows exactly what
a correct planarian looks like

and builds the right organs
in the right places and then stops.

And that’s one of the most
amazing things about regeneration.

So what we discovered is that
if you cut it into three pieces

and amputate the head and the tail
and you just take this middle fragment,

which is what you see here,

amazingly, there is an electrical
gradient, head to tail, that’s generated

that tells the piece
where the heads and the tails go

and in fact, how many heads or tails
you’re supposed to have.

So what we learned to do
is to manipulate this electrical gradient,

and the important thing
is that we don’t apply electricity.

What we do instead was we turned
on and off the little transistors –

they’re actual ion channel proteins –

that every cell natively uses
to set up this electrical state.

So now we have ways
to turn them on and off,

and when you do this,
one of the things you can do

is you can shift that circuit
to a state that says no, build two heads,

or in fact, build no heads.

And what you’re seeing here are real worms
that have either two or no heads

that result from this,

because that electrical map
is what the cells are using

to decide what to do.

And so what you’re seeing here
are live two-headed worms.

And, having generated these,
we did a completely crazy experiment.

You take one of these two-headed worms,
and you chop off both heads,

and you leave just
the normal middle fragment.

Now keep in mind, these animals
have not been genomically edited.

There’s absolutely nothing different
about their genomes.

Their genome sequence
is completely wild type.

So you amputate the heads,
you’ve got a nice normal fragment,

and then you ask: In plain water,
what is it going to do?

And, of course, the standard
paradigm would say,

well, if you’ve gotten rid
of this ectopic extra tissue,

the genome is not edited so it should
make a perfectly normal worm.

And the amazing thing is
that it is not what happens.

These worms, when cut again and again,
in the future, in plain water,

they continue to regenerate as two-headed.

Think about this.

The pattern memory to which these animals
will regenerate after damage

has been permanently rewritten.

And in fact, we can now write it back
and send them back to being one-headed

without any genomic editing.

So this right here is telling you
that the information structure

that tells these worms how many heads
they’re supposed to have

is not directly in the genome.

It is in this additional
bioelectric layer.

Probably many other things are as well.

And we now have the ability to rewrite it.

And that, of course,
is the key definition of memory.

It has to be stable, long-term stable,
and it has to be rewritable.

And we are now beginning to crack
this morphogenetic code

to ask how is it that these tissues
store a map of what to do

and how we can go in
and rewrite that map to new outcomes.

CA: I mean, that seems
incredibly compelling evidence

that DNA is just not
controlling the actual final shape

of these organisms,

that there’s this
whole other thing going on,

and, boy, if you could crack that code,

what else could that lead to.

By the way, just looking at these ones.

What is life like
for a two-headed flatworm?

I mean, it seems like
it’s kind of a trade-off.

The good news is you have this amazing
three-dimensional view of the world,

but the bad news is you have
to poop through both of your mouths?

ML: So, the worms have
these little tubes called pharynxes,

and the tubes are sort of
in the middle of the body,

and they excrete through that.

These animals are perfectly viable.

They’re completely happy, I think.

The problem, however,

is that the two heads
don’t cooperate all that well,

and so they don’t really eat very well.

But if you manage to feed them by hand,

they will go on forever,

and in fact, you should know
these worms are basically immortal.

So these worms, because
they are so highly regenerative,

they have no age limit,

and they’re telling us that
if we crack this secret of regeneration,

which is not only growing new cells
but knowing when to stop –

you see, this is absolutely crucial –

if you can continue to exert
this really profound control

over the three-dimensional structures
that the cells are working towards,

you could defeat aging
as well as traumatic injury

and things like this.

So one thing to keep in mind
is that this ability to rewrite

the large-scale anatomical
structure of the body

is not just a weird planarian trick.

It’s not just something
that works in flatworms.

What you’re seeing here is a tadpole
with an eye and a gut,

and what we’ve done is turned on
a very specific ion channel.

So we basically just manipulated
these little electrical transistors

that are inside of cells,

and we’ve imposed a state
on some of these gut cells

that’s normally associated
with building an eye.

And as a result, what the cells do
is they build an eye.

These eyes are complete.

They have optic nerve, lens, retina,

all the same stuff that an eye
is supposed to have.

They can see, by the way,
out of these eyes.

And what you’re seeing here

is that by triggering
eye-building subroutines

in the physiological software of the body,

you can very easily tell it
to build a complex organ.

And this is important for our biomedicine,

because we don’t know how to micromanage
the construction of an eye.

I think it’s going to be
a really long time

before we can really bottom-up build
things like eyes or hands and so on.

But we don’t need to, because the body
already knows how to do it,

and there are these subroutines
that can be triggered

by specific electrical patterns
that we can find.

And this is what we call
“cracking the bioelectric code.”

We can make eyes. We can make extra limbs.

Here’s one of our five-legged tadpoles.

We can make extra hearts.

We’re starting to crack the code
to understand where are the subroutines

in this software

that we can trigger
and build these complex organs

long before we actually know
how to micromanage the process

at the cellular level.

CA: So as you’ve started to get
to learn this electrical layer

and what it can do,

you’ve been able to create –

is it fair to say it’s almost
like a new, a novel life-form,

called a xenobot?

Talk to me about xenobots.

ML: Right.

So if you think about this,
this leads to a really strange prediction.

If the cells are really willing to build
towards a specific map,

we could take genetically unaltered cells,

and what you’re seeing here
is cells taken out of a frog body.

They’ve coalesced in a way that asks them
to re-envision their multicellularity.

And what you see here

is that when liberated from the rest
of the body of the animal,

they make these tiny little novel bodies
that are, in terms of behavior,

you can see they can move,
they can run a maze.

They are completely different
from frogs or tadpoles.

Frog cells, when asked to re-envision
what kind of body they want to make,

do something incredibly interesting.

They use the hardware
that their genetics gives them,

for example, these
little hairs, these little cilia

that are normally used to redistribute
mucus on the outside of a frog,

those are genetically specified.

But what these creatures did,

because the cells are able
to form novel kinds of bodies,

they have figured out
how to use these little cilia

to instead row against the water,
and now have locomotion.

So not only can they move around,
but they can, and here what you’re seeing,

is that these cells
are coalescing together.

Now they’re starting to have conversations
about what they are going to do.

You can see here the flashes
are these exchanges of information.

Keep in mind, this is just skin.

There is no nervous system.
There is no brain. This is just skin.

This is skin that has learned
to make a new body

and to explore its environment
and move around.

And they have spontaneous behaviors.

You can see here where
it’s swimming down this maze.

At this point, it decides to turn around
and go back where it came from.

So it has its own behavior,
and this is a remarkable model system

for several reasons.

First of all, it shows us
the amazing plasticity of cells

that are genetically wild type.

There is no genetic editing here.

These are cells that are really prone
to making some sort of functional body.

The second thing,

and this was done in collaboration
with Josh Bongard’s lab at UVM,

they modeled the structure of these things
and evolved it in a virtual world.

So this is literally – on a computer,
they modeled it on a computer.

So this is literally the only organism
that I know of on the face of this planet

whose evolution took place
not in the biosphere of the earth

but inside a computer.

So the individual cells
have an evolutionary history,

but this organism
has never existed before.

It was evolved in this virtual world,

and then we went ahead
and made it in the lab,

and you can see this amazing plasticity.

This is not only
for making useful machines.

You can imagine now programming these
to go out into the environment

and collect toxins and cleanup,

or you could imagine ones
made out of human cells

that would go through your body
and collect cancer cells

or reshape arthritic joints,

deliver pro-regenerative compounds,

all kinds of things.

But not only these useful applications –
this is an amazing sandbox

for learning to communicate
morphogenetic signals to cell collectives.

So once we crack this, once we understand
how these cells decide what to do,

and then we’re going to, of course,
learn to rewrite that information,

the next steps are great improvements
in regenerative medicine,

because we will then be able
to tell cells to build healthy organs.

And so this is now
a really critical opportunity

to learn to communicate with cell groups,

not to micromanage them,
not to force the hardware,

to communicate and rewrite the goals
that these cells are trying to accomplish.

CA: Well, it’s mind-boggling stuff.

Finally, Mike, give us
just one other story

about medicine that might be to come

as you develop this understanding

of how this bioelectric layer works.

ML: Yeah, this is incredibly exciting
because, if you think about it,

most of the problems of biomedicine –

birth defects, degenerative disease,
aging, traumatic injury, even cancer –

all boil down to one thing:

cells are not building
what you would like them to build.

And so if we understood
how to communicate with these collectives

and really rewrite
their target morphologies,

we would be able to normalize tumors,

we would be able to repair birth defects,

induce regeneration of limbs
and other organs,

and these are things
we have already done in frog models.

And so now the next really exciting step

is to take this into mammalian cells

and to really turn this into the next
generation of regenerative medicine

where we learn to address
all of these biomedical needs

by communicating with the cell collectives

and rewriting their bioelectric
pattern memories.

And the final thing I’d like to say
is that the importance of this field

is not only for biomedicine.

You see, this, as I started out by saying,

this ability of cells
in novel environments

to build all kinds of things
besides what their genome tells them

is an example of intelligence,

and biology has been
intelligently solving problems

long before brains came on the scene.

And so this is also the beginnings
of a new inspiration for machine learning

that mimics the artificial intelligence
of body cells, not just brains,

for applications in computer intelligence.

CA: Mike Levin, thank you
for your extraordinary work

and for sharing it
so compellingly with us.

Thank you.

ML: Thank you so much. Thank you, Chris.

克里斯安德森:迈克,欢迎。

很高兴见到你。
我为这次谈话感到兴奋。

迈克尔·莱文:非常感谢。
我很高兴来到这里。

CA:所以,我们大多数人
在生物学中都有这样的心理模型,

即 DNA
是每个生物的属性

,它是
一种构建我们身体硬件的软件。

这就是我们很多人的想法。

这种模式留下了太多深刻的谜团。

您能否与我们分享其中的
一些奥秘

以及蝌蚪与它有什么关系?

ML:当然。 是的。

我想给你另一个
关于这个问题的观点。

DNA 所做的一件事
是指定每个细胞的硬件。

所以DNA告诉每个细胞
它应该有什么蛋白质。

因此
,例如,当你有蝌蚪时,

你会

看到大多数人认为是
基因组逐渐展开的那种事情。

特定的基因会打开和关闭

,蝌蚪在变成青蛙时

必须重新排列它的脸。

所以眼睛、鼻孔、下巴——
一切都必须移动。

过去的一种思考
方式是,嗯,


有一套固定的动作

,所有这些东西都在四处移动
,然后你就得到了你的青蛙。

但实际上,几年前,
我们发现了一个非常惊人的现象,

那就是如果你制作
所谓的“毕加索青蛙”——

它们是蝌蚪,下巴
可能偏向一边

,眼睛在上面
, 鼻孔被移动,

所以一切都被移动了——

这些蝌蚪在
很大程度上构成了正常的青蛙脸。

现在,这太神奇了,

因为所有的器官一
开始都处于不正常的位置

,但它们最终还是变成
了一张漂亮的青蛙脸。

事实
证明,这个系统,

就像许多生命系统一样,

不是一套固定的动作,

而是实际上减少
了现在发生的事情

和它所知道的正确的
青蛙脸配置之间的错误。

这种涉及
对新情况的灵活反应的决策,

在其他情况下,
我们称之为智能。

因此,我们现在需要了解
的不仅

是这些细胞
执行其运动

和基因表达等的机制,

而且我们确实必须
了解信息流:

这些细胞如何
相互合作

以构建大型
和 在

创建特定结构时停止构建?

而这些类型的计算,
不仅仅是机制,

还有
解剖控制的计算,

是生物学的未来。

CA:所以我猜传统模型

是细胞以某种方式
向彼此发送生化信号,

从而使这种发展
以智能的方式发生。

但你认为还有
别的东西在起作用。

那是什么?

ML:嗯,细胞确实
通过生物化学和物理力进行交流,

但还有其他一些
非常有趣的东西

,它基本上被称为生物电,

非神经生物电。

所以事实证明,所有细胞——

不仅是神经,
还有你体内的所有细胞——

都使用电信号相互交流

你在这里看到的
是一个延时视频。

我们现在第一次

能够窃听

细胞之间的所有电气对话。

所以想想这个。

我们现在正在观察——

这是一个早期的青蛙胚胎。

这是大约 8 小时
到 10 小时的开发时间。

颜色向您展示了
实际的电气状态

,使您可以查看

在基因组定义的蜂窝硬件上运行的所有电气软件

所以这些细胞基本上是
相互交流的

所以正是这个软件

让这些生命
系统实现了特定的目标,

比如为这样做的动物建造胚胎

或再生肢体

而看到
这些电子对话的能力

为我们提供了一些非常
显着的

目标或目标 重写

这些生命系统运行的目标。

CA:好的,所以这是相当激进的。

让我看看我是否明白这一点。

你说的是
当一个有机体开始发育时,

一旦细胞分裂,

它们之间就会共享电信号。

但是当你到达
一百个,几百个细胞时

,不知何故,这些信号最终形成了
本质上就像一个计算机程序,

一个程序以某种方式包含

了告诉有机体

它的命运是什么所需的所有信息?

这是正确的思考方式吗?

ML:是的,相当。

基本上,发生的事情
是这些细胞

通过形成
类似于大脑中的网络的

电网络,它们形成电网络,

并且这些网络处理
包括模式记忆在内的信息。

它们包括各种器官所在
的大规模解剖结构的表示,

动物的不同轴——
前后、头部和尾巴——

将是什么

,这些实际上是
保存在

跨越大组织的电路中

就像大脑
拥有其他类型的记忆和学习一样。

CA:那么这是正确
的思考方式吗?

因为这似乎是一个很大的转变。

我的意思是,当我第一次拥有一台计算机时,

我对
那些可以做所谓的“机器代码”的人感到敬畏,

比如直接
在计算机中对单个位进行编程。

这对大多数凡人来说是不可能的。

为了有
机会控制那台计算机,

你必须用一种语言编程,

这是
一种让大局发生的简单得多的方法。

如果我理解你的话,

你的意思是,
今天的大多数生物学都在

试图做
机器代码编程

,理解
单个细胞之间

的生化信号,等一下,天哪 ,
有这种语言,

这种电子语言
,如果你能理解它,

那将为我们提供一套完全
不同的

关于有机体如何发育的见解。

这个比喻基本正确吗?

ML:是的,这完全正确。

因此,如果您考虑一下
40 年代编程的方式

,为了让您的
计算机做一些不同的事情,

您将
不得不在物理上改变电线。

所以你必须去
那里重新连接硬件。

您必须
直接与硬件交互,

并且
操作该机器的所有策略

都将在硬件级别。

而我们之所以
拥有现在令人惊叹的技术革命、

信息科学等等,

是因为计算机科学
从关注硬件

转移到了解
你的硬件是否足够好

——我要告诉你,生物
硬件绝对足够好——

然后你可以与你的系统交互,
而不是通过调整或重新布线硬件,

但实际上,你可以退后一步
,给它提供刺激或

输入,就像你给
可重新编程的计算机一样,

并导致 蜂窝
网络做一些与

其他方式完全不同的事情。

因此,看到
这些生物电信号

的能力为我们提供了一个
直接进入

指导大规模解剖软件的入口点,

这是一种非常不同
的医学方法,而

不是
在每个细胞内重新布线特定路径。

CA:所以在很多方面,
你工作的惊人之处

在于你开始破解
这些电信号的代码

,你在这些扁虫身上得到了惊人的
证明

告诉我们这里发生了什么。

ML:所以这是一种
被称为涡虫的生物。

它们是扁虫。

它们实际上是一种相当复杂的生物。

他们有一个真正的大脑,
许多不同的器官等等。

这些涡虫的惊人之处

在于它们具有高度、
高度的再生能力。

所以如果你把它切成小块
——事实上,超过 200 块——

每一块都将完全重建

出制作完美小虫子所需的东西。

所以想想吧。

这是一个系统,其中每一部分都

确切地
知道正确的涡虫长什么样,


在正确的位置构建正确的器官,然后停止。

这是
关于再生的最令人惊奇的事情之一。

所以我们发现
如果你把它切成

三块 截去头部和尾部
然后你只拿中间的

片段 就像你在这里

看到的

那样 告诉
棋子正面和反面的去向

,事实上,你应该有多少正面或反面

所以我们学会做的
是操纵这个电梯度

,重要的
是我们不施加电。

相反,我们所做的是我们
打开和关闭小晶体管——

它们是真正的离子通道蛋白

——每个细胞天生就
用来建立这种电状态。

所以现在我们有办法
打开和关闭它们

,当你这样做时,
你可以做的一件事

是你可以将电路转换
到拒绝的状态,建立两个头,

或者实际上,没有头。

你在这里看到的是真正的蠕虫
,它们要么有两个头,要么没有头

因为这个电子地图
是细胞

用来决定做什么的。

所以你在这里看到的
是活的双头蠕虫。

并且,在生成了这些之后,
我们做了一个完全疯狂的实验。

你取其中一个双头蠕虫,
然后砍掉两个头,

只留下
正常的中间碎片。

现在请记住,这些动物
尚未经过基因组编辑。

他们的基因组绝对没有什么不同

他们的基因组
序列完全是野生型。

所以你截掉了头部,
你得到了一个很好的正常片段,

然后你问:在普通水中,
它会做什么?

而且,当然,标准
范式会说,

好吧,如果你已经摆脱
了这种异位的额外组织

,基因组就不会被编辑,所以它
应该是一个完全正常的蠕虫。

令人惊奇的是
,事实并非如此。

这些蠕虫,当一次又一次地被切割时,
在未来,在清水中,

它们会继续再生为双头。

想想这个。

这些动物
在受损后将再生的模式记忆

已被永久改写。

事实上,我们现在可以将其写回去
,并将它们发送回单头,

无需任何基因组编辑。

所以这里告诉你

,告诉这些蠕虫
它们应该有多少头的信息

结构并不直接在基因组中。

它在这个额外的
生物电层中。

可能还有很多其他的事情。

我们现在有能力重写它。

当然,这
就是记忆的关键定义。

它必须是稳定的,长期稳定的,
并且它必须是可重写的。

我们现在开始破解
这个形态发生密码

,询问这些组织如何
存储一张关于做什么的地图,

以及我们如何进入
并将该地图重写为新的结果。

CA:我的意思是,这似乎是
令人难以置信的令人信服的证据

,表明 DNA 并没有
控制这些生物的实际最终

形状,

还有其他事情正在发生,

而且,男孩,如果你能破解那个密码,

那还能导致什么 .

顺便说一句,看看这些。

双头扁虫的生活是怎样的?

我的意思是,这
似乎是一种权衡。

好消息是你有这种惊人
的三维世界观,

但坏消息是你
必须从你的嘴里拉屎?

ML:所以,蠕虫有
这些叫做咽的小管子,这些管子

在身体的中间

,它们通过它排泄。

这些动物是完全可行的。

我想,他们非常高兴。

但问题

是,两个脑袋
配合

得不太好,吃得也不是特别好。

但如果你设法用手喂它们,

它们将永远存在

,事实上,你应该知道
这些蠕虫基本上是不朽的。

所以这些蠕虫,因为
它们具有很高的再生能力,

它们没有年龄限制

,它们告诉我们,
如果我们破解再生的秘密,

它不仅会生长新细胞,
而且知道何时停止——

你看,这 绝对至关重要——

如果你能继续对细胞正在努力的三维结构施加
这种真正深刻的控制

你就可以战胜衰老
以及创伤

和类似的事情。

所以要记住的一件事
是,这种

重写身体大规模解剖
结构的

能力不仅仅是一种奇怪的涡虫技巧。

这不仅仅是
在扁虫中起作用的东西。

你在这里看到的是一个
有眼睛和内脏的蝌蚪

,我们所做的是打开
一个非常特殊的离子通道。

所以我们基本上只是操纵了细胞内部的
这些小电子晶体管

,我们已经对
这些

通常与构建眼睛相关的一些肠道细胞施加了一种状态

结果,细胞所做的
就是它们建造了一只眼睛。

这双眼睛是完整的。

它们有视神经、晶状体、视网膜,

以及
眼睛应该有的所有东西。

顺便说一句,他们可以
从这些眼睛中看到。

你在这里看到的

是,通过触发

身体生理软件中的眼睛构建子程序,

你可以很容易地告诉
它构建一个复杂的器官。

这对我们的生物医学很重要,

因为我们不知道如何微观管理
眼睛的构造。

我认为

要真正自下而上构建
眼睛或手等东西还需要很长时间。

但我们不需要这样做,因为身体
已经知道如何去做,

而且有这些
子程序可以


我们可以找到的特定电模式触发。

这就是我们所说的
“破解生物电密码”。

我们可以做眼睛。 我们可以做额外的肢体。

这是我们的五足蝌蚪之一。

我们可以做额外的心。

我们开始破解代码
以了解该软件中的子程序在哪里

,我们可以

在我们真正知道
如何在细胞水平上对过程进行微观管理之前很久就可以触发和构建这些复杂的器官

CA:所以当你
开始学习这个电层

以及它可以做什么时,

你已经能够创造

——公平地说,它几乎
就像一种新的、新颖的生命形式,

叫做异种机器人 ?

跟我谈谈异种机器人。

ML:对。

因此,如果您考虑一下,
这会导致一个非常奇怪的预测。

如果细胞真的愿意
朝着特定的地图构建,

我们可以采用基因未改变的细胞,

而你在这里看到的
是从青蛙身体中取出的细胞。

他们以一种要求
他们重新设想他们的多细胞性的方式合并。

你在这里看到的

是,当它们从动物的其他身体中解放出来时

它们会制造出这些微小的、新颖的身体
,就行为而言,

你可以看到它们可以移动,
它们可以走迷宫。

它们
与青蛙或蝌蚪完全不同。

当被要求重新设想
它们想要制造什么样的身体时,青蛙细胞会

做一些非常有趣的事情。

他们使用
遗传赋予他们的硬件,

例如,这些
小毛发,这些

通常用于
在青蛙外部重新分配粘液的小纤毛,

这些都是基因指定的。

但是这些生物做了什么,

因为细胞
能够形成新奇的身体,

他们已经想出了
如何利用这些小纤毛

来代替在水面上划船
,现在有了运动能力。

因此,它们不仅可以四处移动,
而且可以移动,而您在这里看到的

是,这些细胞
正在合并在一起。

现在他们开始
讨论他们将要做什么。

您可以在这里看到闪烁的
是这些信息交换。

请记住,这只是皮肤。

没有神经系统。
没有大脑。 这只是皮肤。

这种皮肤已经学会
了制造一个新的身体

,探索它的环境
并四处走动。

他们有自发的行为。

你可以在这里看到
它在这个迷宫中游过的地方。

在这一点上,它决定
转身回到原来的地方。

所以它有自己的行为
,这是一个非凡的模型系统

,有几个原因。

首先,它向我们展示
了基因野生型细胞的惊人可塑性

这里没有基因编辑。

这些细胞真的很
容易产生某种功能性的身体。

第二件事

,这是
与 Josh Bongard 在 UVM 的实验室合作完成的,

他们对这些东西的结构进行了建模,
并在虚拟世界中对其进行了改进。

所以这是字面上的——在电脑上,
他们在电脑上建模。

所以这是
我所知道的地球表面上唯一的有机体,

它的进化
不是发生在地球的生物圈中,

而是发生在计算机内部。

所以单个细胞
有进化史,

但这种有机体
以前从未存在过。

它是在这个虚拟世界中进化的,

然后我们继续
在实验室中制作它

,你可以看到这种惊人的可塑性。

这不仅是
为了制造有用的机器。

你可以想象现在对这些
进行编程以进入环境

并收集毒素并进行清理,

或者你可以想象
由人体细胞制成的

那些会穿过你的身体
并收集癌细胞

或重塑关节炎关节,

提供促再生化合物,

所有这些 各种东西。

但不仅仅是这些有用的应用程序——
这是一个惊人的沙箱,

用于学习将
形态发生信号传递给细胞群。

所以一旦我们破解了这个问题,一旦我们了解
了这些细胞是如何决定做

什么的,然后我们当然要
学会重写这些信息

,接下来的步骤就是
再生医学的巨大改进,

因为我们将能够
告诉细胞建立健康的器官。

因此,现在这是
一个非常重要的机会,

可以学习与细胞群交流,

而不是对它们进行微观管理,
而不是强迫硬件

,交流和重写
这些细胞试图实现的目标。

CA:嗯,这是令人难以置信的东西。

最后,迈克,请给
我们另一个

关于医学的故事,

当你逐渐

了解这个生物电层的工作原理时,它可能会出现。

ML:是的,这非常令人兴奋,
因为如果你仔细想想

,生物医学的大多数问题——

出生缺陷、退行性疾病、
衰老、外伤甚至癌症——

都归结为一件事:

细胞没有建立
你希望他们建造什么。

因此,如果我们了解
如何与这些集体沟通

并真正改写
他们的目标形态,

我们将能够使肿瘤正常化,

我们将能够修复出生缺陷,

诱导四肢
和其他器官的再生

,这些都是
我们已经拥有的东西 在青蛙模型中完成。

所以现在下一个真正令人兴奋的步骤

是将其应用到哺乳动物细胞中,

并真正将其转变为
下一代再生医学

,我们

通过与细胞群交流

并重写它们的生物电
模式记忆来学习满足所有这些生物医学需求。

最后我想说的
是,这个领域的重要性

不仅仅在于生物医学。

你看,正如我一开始所说,

细胞
在新环境中的这种能力

除了它们的基因组告诉它们之外,还可以制造各种东西,这

是智能的一个例子,

而生物学早在大脑出现之前就已经
智能地解决了问题

。 场景。

因此,这也是
机器学习新灵感的开始,

它模仿
身体细胞的人工智能,而不仅仅是大脑,

用于计算机智能的应用。

CA:Mike Levin,
感谢您出色的工作

以及
与我们如此引人注目的分享。

谢谢你。

ML:非常感谢。 谢谢你,克里斯。