Nabiha Saklayen Could you recover from illness ... using your own stem cells TED

You’re sitting in the doctor’s office
waiting for test results.

She comes in and says,

“You have Parkinson’s disease.”

Your heart sinks, and you think about
everything that will go wrong:

you’ll be unable to walk, unable to feed
yourself, your hands trembling, drooling,

unable to swallow.

But before you say anything, she says,

“Not to worry, we’ll put
in an order for your cells today.”

You come back a week later,

and a surgeon transplants
brand new neurons into your brain.

You just received an on-demand
functional cure for Parkinson’s,

made from your cells.

It sounds like science fiction,
but in the future,

we will all have the option of having
our stem cells banked ahead of time

so that any time you need new neurons,
new muscle cells, new skin cells,

they’d be generated from this bank.

And because they’re
100 percent your cells,

your immune system is extremely unlikely
to reject or attack those cells.

In fact, the body has no idea

that these cells were
actually made in a cell factory.

All of this is possible
because of a breakthrough

at the intersection of biology,
laser physics and machine learning.

We’ll start with biology.

The human body is an absolute miracle.

Trillions of cells are working
in synchronicity

to pump blood, secrete dopamine

and let me see and speak to you right now.

But as we age, our cells age, too.

That’s why our skin starts to sag,

our cartilage wears away,

and your five-mile run
might turn into a 20-minute walk.

Yes, we’re all getting older.

Our bodies are ticking time bombs.

But stem cells could offer a solution,

because one stem cell can become
almost any cell in your body.

My grandma passed away
due to diabetes in 2012.

If the technology
were available at the time,

we could have used her stem cells
to generate new pancreatic cells,

and it could have cured her.

Now, unfortunately, stem cells
are notoriously difficult to engineer.

One fundamental problem
relates to how they’re made,

which involves taking
a patient’s blood cells

and adding chemicals to those blood cells
to turn them into stem cells.

Now, during this chemical process,

you never end up with
a perfect set of stem cells.

In fact, you get a very messy plate
of cells going in different directions –

towards the eye, brain, liver –

and every random cell must be removed.

Until recently, the main way
to remove cells was by hand.

I remember the first time I visited
the Harvard Stem Cell Institute.

I watched a highly skilled scientist
sitting at a bench looking at stem cells,

evaluating them one at a time

and removing the unwanted cells by hand.

It’s a slow, tedious
and artisanal process,

which is why generating
a personalized stem cell bank today

costs about one million dollars.

Now, using a donor’s stem cells
is much cheaper,

but your immune system will likely
attack or reject those cells

unless you take immunosuppressants,

which, unfortunately, is not an option
for a lot of people,

especially the elderly.

To avoid this problem,

some scientists are banking stem cells

from individuals with the most
common genetic backgrounds.

Here in the US,

let’s say we made a cell bank
with 100 of the most common cell lines.

It could work for about
75 percent of Caucasians,

50 percent of African Americans.

But it gets harder.

My cofounder is Filipina-Mexican,

and it’s unclear if she would
be ever covered by a bank.

And regardless,

if you could choose between using
a stranger’s cells versus your own,

wouldn’t you choose your own?

Personalized stem cells
are our opportunity

to make medicines that truly work
for me, for you and everyone.

And in order to make this process of stem
cell production affordable and scalable,

we have to automate it.

Different people are taking
different approaches to doing that,

and I decided to use physics.

Since childhood, I’ve been
a die-hard physics fan,

gazing at the stars,

daydreaming about space travel.

Thanks, Mom, for not thinking I was weird!

My family moved around a lot,

from Saudi Arabia to Germany
to Sri Lanka to Bangladesh,

and each time, I had to learn
new languages and cultures.

Eventually, I fell in love with physics
because it was a universal language

that I didn’t have to relearn every time.

When I started my PhD,
I joined a laser physics lab,

because lasers are the coolest.

But I also decided to dabble in biology.

I started using lasers
to engineer human cells,

and when I talked to biologists
about it, they were amazed.

Here’s why: scientists are always looking
for ways to make biology more precise.

Sometimes cell culture
can feel a lot like cooking:

take some chemicals, put it in a pot,
stir it, heat it, see what happens,

try it all over again.

In contrast, lasers are so precise,

you can target one cell in millions
at precise intervals –

every second, every minute,
every hour – you name it.

I realized that instead of doing
this tedious process of stem cell culture

by hand,

we could use lasers to remove
the unwanted cells.

And to automate the entire process,

we decided to use machine learning
to identify those unwanted cells

and zap them.

Algorithms today are great at finding
useful information and images,

making this a perfect use case
for machine learning.

Here’s how it works:

Take some blood cells,
put it in a cassette.

Add chemicals to those blood cells to turn
them into stem cells like always.

Now, instead of having a human
look for those unwanted cells

and remove them by hand,

the machine identifies the unwanted cells

and zaps them with a laser.

As you can see, this entire process
happens by machine.

The computer decides when
and how often to print the cells

and uses a fully automated system
to run the process.

After repeated pruning,

you end up with a perfect culture
of your stem cells,

ready to be banked and used at any time.

In the future, we’re going to have
stem cell farms

with stacks and stacks of hundreds
and then eventually millions of cassettes,

each cassette a personalized
bank for one human.

Nurses will take a sample
of your cord blood right at birth

and ship it off for cultivation,

so that for the rest of your life,
your stem cells are on file, banked,

ready to go, should any
medical need arise.

Let’s say you develop heart disease.

Your doctor can order up new heart cells.

Hair loss. They can order up new hair.

The most immediate application
of this technology is for implants.

Dr. Kapil Bharti’s research
at the National Eye Institute

has informed a breakthrough clinical trial

for a stem cell derived
therapy for blindness.

As the process becomes cheaper,

scientists can run larger and larger
clinical trials at scale

to develop new treatments
that don’t exist today,

because what costs
one million dollars today

will soon be less than 50,000,

and then even cheaper with time.

Now, it gets even more
interesting than that.

And perhaps you have longevity in mind.

That is certainly a possibility.

In the future, we might use
these exact same stem cell banks

to generate entire new organs,
new tissues, new skin …

New bone, teeth, anyone?

This technology also has the potential

to revolutionize
personalized pharmaceuticals.

Today, taking medicine is,
to some degree, trial and error.

You don’t really know
if the drug is going to work for you

until you put it in your body.

But what if we had a miniature
human replica of you with your cells –

eye cells, brain cells, heart cells,
muscle cells, blood cells –

on a chip?

A miniature human replica of you.

We could take the drugs, test
them on the cells in the lab first

to see how it works.

If it works, fantastic.
Go ahead and take the drug.

If it doesn’t, pharmacists can
order up custom drugs just for you.

This has been the hope and dream
of scientists for decades.

With this technology,

we can finally realize
the true potential of stem cells:

on-demand functional cures
made from your cells.

Cures that your body won’t reject.

Cures that truly work for everyone.

The future of regenerative medicine
is 100 percent personalized,

and it’s a lot closer than you think.

Thank you.

(Applause)

你坐在医生办公室
等待检查结果。

她进来说:

“你得了帕金森病。”

你的心沉了下去,你想着
一切会出错的事情:

你将无法行走,无法喂养
自己,你的手会颤抖,流口水,

无法吞咽。

但在你说话之前,她说,

“别担心,我们
今天会为你的牢房订购。”

一周后你回来

,外科医生将
全新的神经元移植到你的大脑中。

您刚刚收到了一种由您的细胞制成的按需
功能性帕金森病治疗方法

这听起来像科幻小说,
但在未来,

我们都可以选择
提前储存我们的干细胞,

这样任何时候你需要新的神经元、
新的肌肉细胞、新的皮肤细胞,

它们就会从中产生 银行。

因为它们
100% 是你的细胞,所以

你的免疫系统极
不可能排斥或攻击这些细胞。

事实上,身体并不

知道这些细胞
实际上是在细胞工厂中制造的。

这一切之所以成为可能,是
因为

生物学、
激光物理学和机器学习的交叉领域取得了突破。

我们将从生物学开始。

人体是一个绝对的奇迹。

数以万亿计的细胞
正在同步工作,

以泵血、分泌多巴胺

,让我现在就看到并与你交谈。

但随着年龄的增长,我们的细胞也会老化。

这就是为什么我们的皮肤开始下垂,

我们的软骨磨损

,你的五英里跑步
可能会变成 20 分钟的步行。

是的,我们都在变老。

我们的身体是定时炸弹。

但干细胞可以提供解决方案,

因为一个干细胞几乎可以变成
你体内的任何细胞。

我奶奶
在 2012 年因糖尿病去世。

如果当时有技术

我们本可以利用她的干
细胞生成新的胰腺细胞,

并且可以治愈她。

现在,不幸的是,干细胞
是出了名的难以改造。

一个基本问题
与它们的制造方式有关,

这涉及
获取患者的血细胞

并向这些血细胞中添加化学物质
以将它们转化为干细胞。

现在,在这个化学过程中,

你永远不会得到
一套完美的干细胞。

事实上,你会得到一个非常混乱
的细胞板,朝着不同的方向——

朝向眼睛、大脑、肝脏——

并且每个随机细胞都必须被移除。

直到最近,
去除细胞的主要方法还是用手。

我记得我第一次
参观哈佛干细胞研究所。

我看到一位技术娴熟的科学家
坐在长凳上观察干细胞,

一次评估一个,

然后用手去除不需要的细胞。

这是一个缓慢、乏味
和手工的过程,

这就是为什么
今天建立一个个性化的干细胞库要

花费大约一百万美元。

现在,使用捐赠者的干细胞
要便宜得多,

但除非你服用免疫抑制剂,否则你的免疫系统可能会
攻击或排斥这些细胞

,不幸的是,这不是
很多人的选择,

尤其是老年人。

为了避免这个问题,

一些科学家正在储存

来自具有最
常见遗传背景的个体的干细胞。

在美国,

假设我们
用 100 种最常见的细胞系建立了一个细胞库。

它适用于大约
75% 的高加索人、

50% 的非裔美国人。

但它变得越来越难。

我的联合创始人是菲律宾裔墨西哥人

,目前尚不清楚她是否
会被银行覆盖。

无论如何,

如果你可以在
使用陌生人的细胞和你自己的细胞之间

做出选择,你不会选择自己的吗?

个性化干细胞
是我们

制造真正
适合我、您和所有人的药物的机会。

为了使这个干
细胞生产过程负担得起且可扩展,

我们必须将其自动化。

不同的人采取
不同的方法来做到这一点

,我决定使用物理学。

从孩提时代起,我就是
一个物理的铁杆粉丝,

仰望星空,

幻想着太空旅行。

谢谢,妈妈,没有觉得我很奇怪!

我的家人经常搬家,

从沙特阿拉伯到德国,
从斯里兰卡到孟加拉国

,每次我都必须学习
新的语言和文化。

最终,我爱上了物理学,
因为它是

一种我不必每次都重新学习的通用语言。

当我开始攻读博士学位时,
我加入了一个激光物理实验室,

因为激光是最酷的。

但我也决定涉足生物学。

我开始使用激光
来改造人体细胞

,当我与生物学家
谈论它时,他们感到很惊讶。

原因如下:科学家们一直在
寻找使生物学更加精确的方法。

有时细胞
培养感觉很像烹饪:

取一些化学物质,放入锅中,
搅拌,加热,看看会发生什么,

再试一次。

相比之下,激光非常精确,

您可以
以精确的间隔——

每秒、每分钟、
每小时——以你的名字命名它,以百万计的细胞为目标。

我意识到,我们可以使用激光去除不需要的细胞,而不是手动进行
这种繁琐的干细胞培养过程

为了使整个过程自动化,

我们决定使用机器学习
来识别那些不需要的细胞

并消灭它们。

今天的算法非常适合寻找
有用的信息和图像,

使其成为机器学习的完美用例

它是这样工作的:

取一些血细胞,
放入盒中。

向这些血细胞中添加化学物质,
像往常一样将它们变成干细胞。

现在,机器不再需要人工
寻找那些不需要的细胞

并用手去除它们,而是

识别不需要的细胞

并用激光将它们击穿。

如您所见,这整个过程是
由机器完成的。

计算机
决定打印单元的时间和频率,

并使用全自动系统
来运行该过程。

经过反复修剪,

您最终获得了完美
的干细胞培养物,

可以随时储存和使用。

未来,我们将拥有成堆成堆的
干细胞农场

,最终成百上千个盒子,

每个盒子都是一个人的个性化
银行。

护士会
在您出生时采集脐带血样本

并将其运走进行培养,

以便在您的余生中,
您的干细胞都在档案中,储存起来

,随时可以在
出现任何医疗需求时使用。

假设您患上了心脏病。

您的医生可以订购新的心脏细胞。

脱发。 他们可以订购新头发。

这项技术最直接的应用
是植入物。

Kapil Bharti 博士
在国家眼科研究所的研究

为干细胞衍生治疗失明的突破性临床试验提供了信息

随着这一过程变得越来越便宜,

科学家们可以进行规模越来越大的
临床试验,

以开发
今天不存在的新疗法,

因为今天花费
100 万美元的药物

很快将低于 50,000 美元,

然后随着时间的推移甚至更便宜。

现在,它变得
比这更有趣。

也许你有长寿的想法。

这当然是一种可能性。

未来,我们可能会使用
这些完全相同的干细胞库

来生成全新的器官、
新组织、新皮肤……

新骨骼、新牙齿,还有其他人吗?

这项技术也有可能

彻底改变
个性化药物。

今天,吃药
在某种程度上是反复试验。

在将药物放入体内之前,您并不真正知道药物是否对您有效

但是,如果我们有一个微型
人类复制品,你的细胞——

眼细胞、脑细胞、心脏细胞、
肌肉细胞、血细胞——

在芯片上呢?

你的微型人类复制品。

我们可以服用这些药物,
首先在实验室的细胞上进行测试

,看看它是如何起作用的。

如果它有效,那就太棒了。
继续吃药。

如果没有,药剂师
可以为您订购定制药物。

这是
几十年来科学家们的希望和梦想。

借助这项技术,

我们终于可以实现
干细胞的真正潜力:

利用您的细胞进行按需功能性治疗

治愈你的身体不会拒绝。

真正适用于所有人的治疗方法。

再生医学的未来
是 100% 个性化的

,它比你想象的要近得多。

谢谢你。

(掌声)