RNAi Slicing dicing and serving your cells Alex Dainis

You can think of your cells

as the kitchen in a busy restaurant.

Sometimes your body orders chicken.

Other times, it orders steak.

Your cells have to be able to crank out

whatever the body needs

and quickly.

When an order comes in,

the chef looks to the cookbook, your DNA,

for the recipe.

She then transcribes that message

onto a piece of paper called RNA

and brings it back to her countertop, the ribosome.

There, she can translate the recipe into a meal,

or for your cells, a protein,

by following the directions that she’s copied down.

But RNA does more for the cell

than just act as a messenger

between a cook and her cookbook.

It can move in reverse and create DNA,

it can direct amino acids to their targets,

or it can take part in RNA interference,

or RNAi.

But wait!

Why would RNA want to interfere with itself?

Well, sometimes a cell doesn’t want to turn

all of the messenger RNA it creates into protein,

or it may need to destroy RNA injected into the cell

by an attacking virus.

Say, for example, in our cellular kitchen,

that someone wanted to cancel their order

or decided they wanted chips instead of fries.

That’s where RNAi comes in.

Thankfully, your cells have the perfect knives

for just this kind of job.

When the cell finds or produces

long, double-stranded RNA molecules,

it chops these molecules up

with a protein actually named dicer.

Now, these short snippets of RNA

are floating around in the cell,

and they’re picked up by something called RISC,

the RNA Silencing Complex.

It’s composed of a few different proteins,

the most important being slicer.

This is another aptly named protein,

and we’ll get to why in just a second.

RISC strips these small chunks

of double-stranded RNA in half,

using the single strand to target matching mRNA,

looking for pieces that fit together

like two halves of a sandwich.

When it finds the matching piece of mRNA,

RISC’s slicer protein slices it up.

The cell then realizes

there are odd, strangely sized pieces

of RNA floating around

and destroys them,

preventing the mRNA from being turned into protein.

So, you have double-stranded RNA,

you dice it up,

it targets mRNA,

and then that gets sliced up, too.

Voila!

You’ve prevented expression

and saved yourself some unhappy diners.

So, how did anybody ever figure this out?

Well, the process was first discovered in petunias

when botanists trying to create deep purple blooms

introduced a pigment-producing gene into the flowers.

But instead of darker flowers,

they found flowers with white patches

and no pigment at all.

Instead of using the RNA produced by the new gene

to create more pigment,

the flowers were actually using it

to knock down the pigment-producing pathway,

destroying RNA

from the plant’s original genes with RNAi,

and leaving them with pigment-free white flowers.

Scientists saw a similar phenomena

in tiny worms called C. elegans,

and once they figured out what was happening,

they realized they could use RNAi

to their advantage.

Want to see what happens

when a certain gene is knocked out of a worm

or a fly?

Introduce an RNAi construct for that gene,

and bam!

No more protein expression.

You can even get creative

and target that effect to certain systems,

knocking down genes in just the brain,

or just the liver,

or just the heart.

Figuring out what happens

when you knock down a gene in a certain system

can be an important step

in figuring out what that gene does.

But RNAi isn’t just for understanding

how things happen.

It can also be a powerful, therapeutic tool

and could be a way for us to manipulate

what is happening within own cells.

Researchers have been experimenting

with using it to their advantage in medicine,

including targeting RNA and tumor cells

in the hopes of turning off cancer-causing genes.

In theory, our cellular kitchens

could serve up an order of cells,

hold the cancer.

你可以把你的牢房想象

成一家繁忙餐厅的厨房。

有时你的身体会点鸡肉。

其他时候,它会点牛排。

你的细胞必须能够快速生产

出身体需要的任何东西

收到订单后

,厨师会查看食谱,即您的 DNA,

寻找食谱。

然后,她将该信息转录

到一张名为 RNA 的纸上

,并将其带回她的工作台面,即核糖体。

在那里,她可以按照她抄下来的说明将食谱翻译成一顿饭

,或者为你的细胞翻译一种蛋白质

但 RNA 对细胞的

作用不仅仅是充当

厨师和她的食谱之间的信使。

它可以反向移动并产生 DNA,

它可以将氨基酸引导到它们的目标,

或者它可以参与 RNA 干扰

或 RNAi。

可是等等!

为什么 RNA 会想要干扰自己?

嗯,有时细胞不想将

它产生的所有信使 RNA 转化为蛋白质,

或者它可能需要破坏

由攻击病毒注入细胞的 RNA。

例如,在我们的蜂窝厨房中

,有人想取消他们的订单

或决定他们想要薯条而不是薯条。

这就是 RNAi 的用武之地。

谢天谢地,你的细胞有完美的刀具

来完成这种工作。

当细胞发现或产生

长的双链 RNA 分子时,

它会

用一种实际上称为 dicer 的蛋白质将这些分子切碎。

现在,这些 RNA 的短片段

漂浮在细胞中

,它们被称为 RISC

的 RNA 沉默复合体拾取。

它由几种不同的蛋白质组成

,最重要的是切片机。

这是另一种恰当命名的蛋白质

,我们将在一秒钟内了解原因。

RISC 将这些

小块双链 RNA 切成两半,

使用单链靶向匹配的 mRNA,

寻找

像三明治的两半一样组合在一起的片段。

当它找到匹配的 mRNA 片段时,

RISC 的切片器蛋白将其切片。

然后细胞意识到

有奇怪的、奇怪大小

的 RNA 片段漂浮在周围

并破坏它们,

从而阻止 mRNA 转化为蛋白质。

所以,你有双链 RNA,

你把它切成小方块,

它以 mRNA 为目标

,然后它也被切成薄片。

瞧!

你阻止了表达

并为自己节省了一些不愉快的食客。

那么,有人是怎么想出来的呢?

嗯,这个过程最初是在矮牵牛中发现的,

当时植物学家试图创造深紫色的花朵,

将一种产生色素的基因引入花朵中。

但他们发现的不是颜色较深的花朵,而是

带有白色斑块

且完全没有色素的花朵。 这些花并没有使用

新基因产生的 RNA

来产生更多的色素

,而是利用它

来破坏色素产生途径,

用 RNAi 破坏植物原始基因中的 RNA,

并留下无色素的白色花朵。

科学家们在一种

叫做秀丽隐杆线虫的微小蠕虫身上看到了类似的现象

,一旦他们弄清楚发生了什么,

他们就意识到他们可以利用 RNAi

来发挥自己的优势。

想看看

当某个基因从蠕虫或苍蝇中敲除时会发生什么

为该基因引入一个 RNAi 构建体,

然后砰!

不再有蛋白质表达。

你甚至可以

发挥创意,将这种效果定位到某些系统,

只敲除大脑、

肝脏

或心脏中的基因。

弄清楚

当你在某个系统中敲除一个基因时会发生什么,

可能

是弄清楚那个基因的作用的重要一步。

但 RNAi 不仅仅是为了

了解事情是如何发生的。

它也可以是一种强大的治疗工具,

并且可以成为我们操纵

自身细胞内发生的事情的一种方式。

研究人员一直在

尝试将其用于医学上的优势,

包括靶向 RNA 和肿瘤细胞

,以期关闭致癌基因。

从理论上讲,我们的细胞厨房

可以提供一系列细胞,

容纳癌症。