Soon Well Cure Diseases With a Cell Not a Pill Siddhartha Mukherjee TED Talks

I want to talk to you
about the future of medicine.

But before I do that, I want to talk
a little bit about the past.

Now, throughout much
of the recent history of medicine,

we’ve thought about illness and treatment

in terms of a profoundly simple model.

In fact, the model is so simple

that you could summarize it in six words:

have disease, take pill, kill something.

Now, the reason
for the dominance of this model

is of course the antibiotic revolution.

Many of you might not know this,
but we happen to be celebrating

the hundredth year of the introduction
of antibiotics into the United States.

But what you do know

is that that introduction
was nothing short of transformative.

Here you had a chemical,
either from the natural world

or artificially synthesized
in the laboratory,

and it would course through your body,

it would find its target,

lock into its target –

a microbe or some part of a microbe –

and then turn off a lock and a key

with exquisite deftness,
exquisite specificity.

And you would end up taking
a previously fatal, lethal disease –

a pneumonia, syphilis, tuberculosis –

and transforming that
into a curable, or treatable illness.

You have a pneumonia,

you take penicillin,

you kill the microbe

and you cure the disease.

So seductive was this idea,

so potent the metaphor of lock and key

and killing something,

that it really swept through biology.

It was a transformation like no other.

And we’ve really spent the last 100 years

trying to replicate that model
over and over again

in noninfectious diseases,

in chronic diseases like diabetes
and hypertension and heart disease.

And it’s worked,
but it’s only worked partly.

Let me show you.

You know, if you take the entire universe

of all chemical reactions
in the human body,

every chemical reaction
that your body is capable of,

most people think that that number
is on the order of a million.

Let’s call it a million.

And now you ask the question,

what number or fraction of reactions

can actually be targeted

by the entire pharmacopoeia,
all of medicinal chemistry?

That number is 250.

The rest is chemical darkness.

In other words, 0.025 percent
of all chemical reactions in your body

are actually targetable
by this lock and key mechanism.

You know, if you think
about human physiology

as a vast global telephone network

with interacting nodes
and interacting pieces,

then all of our medicinal chemistry

is operating on one tiny corner

at the edge, the outer edge,
of that network.

It’s like all of our
pharmaceutical chemistry

is a pole operator in Wichita, Kansas

who is tinkering with about
10 or 15 telephone lines.

So what do we do about this idea?

What if we reorganized this approach?

In fact, it turns out
that the natural world

gives us a sense of how one
might think about illness

in a radically different way,

rather than disease, medicine, target.

In fact, the natural world
is organized hierarchically upwards,

not downwards, but upwards,

and we begin with a self-regulating,
semi-autonomous unit called a cell.

These self-regulating,
semi-autonomous units

give rise to self-regulating,
semi-autonomous units called organs,

and these organs coalesce
to form things called humans,

and these organisms
ultimately live in environments,

which are partly self-regulating
and partly semi-autonomous.

What’s nice about this scheme,
this hierarchical scheme

building upwards rather than downwards,

is that it allows us
to think about illness as well

in a somewhat different way.

Take a disease like cancer.

Since the 1950s,

we’ve tried rather desperately to apply
this lock and key model to cancer.

We’ve tried to kill cells

using a variety of chemotherapies
or targeted therapies,

and as most of us know, that’s worked.

It’s worked for diseases like leukemia.

It’s worked for some forms
of breast cancer,

but eventually you run
to the ceiling of that approach.

And it’s only in the last 10 years or so

that we’ve begun to think
about using the immune system,

remembering that in fact the cancer cell
doesn’t grow in a vacuum.

It actually grows in a human organism.

And could you use the organismal capacity,

the fact that human beings
have an immune system, to attack cancer?

In fact, it’s led to the some of the most
spectacular new medicines in cancer.

And finally there’s the level
of the environment, isn’t there?

You know, we don’t think of cancer
as altering the environment.

But let me give you an example
of a profoundly carcinogenic environment.

It’s called a prison.

You take loneliness, you take depression,
you take confinement,

and you add to that,

rolled up in a little
white sheet of paper,

one of the most potent neurostimulants
that we know, called nicotine,

and you add to that one of the most potent
addictive substances that you know,

and you have
a pro-carcinogenic environment.

But you can have anti-carcinogenic
environments too.

There are attempts to create milieus,

change the hormonal milieu
for breast cancer, for instance.

We’re trying to change the metabolic
milieu for other forms of cancer.

Or take another disease, like depression.

Again, working upwards,

since the 1960s and 1970s,
we’ve tried, again, desperately

to turn off molecules
that operate between nerve cells –

serotonin, dopamine –

and tried to cure depression that way,

and that’s worked,
but then that reached the limit.

And we now know that what you
really probably need to do

is to change the physiology
of the organ, the brain,

rewire it, remodel it,

and that, of course,
we know study upon study has shown

that talk therapy does exactly that,

and study upon study
has shown that talk therapy

combined with medicines, pills,

really is much more effective
than either one alone.

Can we imagine a more immersive
environment that will change depression?

Can you lock out the signals
that elicit depression?

Again, moving upwards along this
hierarchical chain of organization.

What’s really at stake perhaps here

is not the medicine itself but a metaphor.

Rather than killing something,

in the case of the great
chronic degenerative diseases –

kidney failure, diabetes,
hypertension, osteoarthritis –

maybe what we really need to do is change
the metaphor to growing something.

And that’s the key, perhaps,

to reframing our thinking about medicine.

Now, this idea of changing,

of creating a perceptual
shift, as it were,

came home to me to roost in a very
personal manner about 10 years ago.

About 10 years ago –
I’ve been a runner most of my life –

I went for a run, a Saturday morning run,

I came back and woke up
and I basically couldn’t move.

My right knee was swollen up,

and you could hear that ominous crunch
of bone against bone.

And one of the perks of being a physician
is that you get to order your own MRIs.

And I had an MRI the next week,
and it looked like that.

Essentially, the meniscus of cartilage
that is between bone

had been completely torn
and the bone itself had been shattered.

Now, if you’re looking at me
and feeling sorry,

let me tell you a few facts.

If I was to take an MRI
of every person in this audience,

60 percent of you would show signs

of bone degeneration
and cartilage degeneration like this.

85 percent of all women by the age of 70

would show moderate to severe
cartilage degeneration.

50 to 60 percent
of the men in this audience

would also have such signs.

So this is a very common disease.

Well, the second perk of being a physician

is that you can get
to experiment on your own ailments.

So about 10 years ago we began,

we brought this process
into the laboratory,

and we began to do simple experiments,

mechanically trying
to fix this degeneration.

We tried to inject chemicals
into the knee spaces of animals

to try to reverse cartilage degeneration,

and to put a short summary
on a very long and painful process,

essentially it came to naught.

Nothing happened.

And then about seven years ago,
we had a research student from Australia.

The nice thing about Australians

is that they’re habitually used to
looking at the world upside down.

(Laughter)

And so Dan suggested to me, “You know,
maybe it isn’t a mechanical problem.

Maybe it isn’t a chemical problem.
Maybe it’s a stem cell problem.”

In other words, he had two hypotheses.

Number one, there is such a thing
as a skeletal stem cell –

a skeletal stem cell that builds up
the entire vertebrate skeleton,

bone, cartilage and the fibrous
elements of skeleton,

just like there’s a stem cell in blood,

just like there’s a stem cell
in the nervous system.

And two, that maybe that, the degeneration
or dysfunction of this stem cell

is what’s causing osteochondral arthritis,
a very common ailment.

So really the question was,
were we looking for a pill

when we should have really
been looking for a cell.

So we switched our models,

and now we began
to look for skeletal stem cells.

And to cut again a long story short,

about five years ago,
we found these cells.

They live inside the skeleton.

Here’s a schematic and then
a real photograph of one of them.

The white stuff is bone,

and these red columns that you see
and the yellow cells

are cells that have arisen
from one single skeletal stem cell –

columns of cartilage, columns of bone
coming out of a single cell.

These cells are fascinating.
They have four properties.

Number one is that they live
where they’re expected to live.

They live just underneath
the surface of the bone,

underneath cartilage.

You know, in biology,
it’s location, location, location.

And they move into the appropriate areas
and form bone and cartilage.

That’s one.

Here’s an interesting property.

You can take them out
of the vertebrate skeleton,

you can culture them
in petri dishes in the laboratory,

and they are dying to form cartilage.

Remember how we couldn’t
form cartilage for love or money?

These cells are dying to form cartilage.

They form their own furls
of cartilage around themselves.

They’re also, number three,

the most efficient repairers
of fractures that we’ve ever encountered.

This is a little bone,
a mouse bone that we fractured

and then let it heal by itself.

These stem cells have come in
and repaired, in yellow, the bone,

in white, the cartilage,
almost completely.

So much so that if you label them
with a fluorescent dye

you can see them like some kind
of peculiar cellular glue

coming into the area of a fracture,

fixing it locally
and then stopping their work.

Now, the fourth one is the most ominous,

and that is that their numbers
decline precipitously,

precipitously, tenfold,
fiftyfold, as you age.

And so what had happened, really,

is that we found ourselves
in a perceptual shift.

We had gone hunting for pills

but we ended up finding theories.

And in some ways

we had hooked ourselves
back onto this idea:

cells, organisms, environments,

because we were now thinking
about bone stem cells,

we were thinking about arthritis
in terms of a cellular disease.

And then the next question was,
are there organs?

Can you build this
as an organ outside the body?

Can you implant cartilage
into areas of trauma?

And perhaps most interestingly,

can you ascend right up
and create environments?

You know, we know
that exercise remodels bone,

but come on, none of us
is going to exercise.

So could you imagine ways of passively
loading and unloading bone

so that you can recreate
or regenerate degenerating cartilage?

And perhaps more interesting,
and more importantly,

the question is, can you apply this model
more globally outside medicine?

What’s at stake, as I said before,
is not killing something,

but growing something.

And it raises a series of, I think,
some of the most interesting questions

about how we think
about medicine in the future.

Could your medicine
be a cell and not a pill?

How would we grow these cells?

What we would we do to stop
the malignant growth of these cells?

We heard about the problems
of unleashing growth.

Could we implant
suicide genes into these cells

to stop them from growing?

Could your medicine be an organ
that’s created outside the body

and then implanted into the body?

Could that stop some of the degeneration?

What if the organ needed to have memory?

In cases of diseases of the nervous system
some of those organs had memory.

How could we implant
those memories back in?

Could we store these organs?

Would each organ have to be developed
for an individual human being

and put back?

And perhaps most puzzlingly,

could your medicine be an environment?

Could you patent an environment?

You know, in every culture,

shamans have been using
environments as medicines.

Could we imagine that for our future?

I’ve talked a lot about models.
I began this talk with models.

So let me end with some thoughts
about model building.

That’s what we do as scientists.

You know, when an architect
builds a model,

he or she is trying to show you
a world in miniature.

But when a scientist is building a model,

he or she is trying to show you
the world in metaphor.

He or she is trying to create
a new way of seeing.

The former is a scale shift.
The latter is a perceptual shift.

Now, antibiotics created
such a perceptual shift

in our way of thinking about medicine
that it really colored, distorted,

very successfully, the way we’ve thought
about medicine for the last hundred years.

But we need new models
to think about medicine in the future.

That’s what’s at stake.

You know, there’s
a popular trope out there

that the reason we haven’t had
the transformative impact

on the treatment of illness

is because we don’t have
powerful-enough drugs,

and that’s partly true.

But perhaps the real reason is

that we don’t have powerful-enough
ways of thinking about medicines.

It’s certainly true that

it would be lovely to have new medicines.

But perhaps what’s really at stake
are three more intangible M’s:

mechanisms, models, metaphors.

Thank you.

(Applause)

Chris Anderson:
I really like this metaphor.

How does it link in?

There’s a lot of talk in technologyland

about the personalization of medicine,

that we have all this data
and that medical treatments of the future

will be for you specifically,
your genome, your current context.

Does that apply to this model
you’ve got here?

Siddhartha Mukherjee:
It’s a very interesting question.

We’ve thought about
personalization of medicine

very much in terms of genomics.

That’s because the gene
is such a dominant metaphor,

again, to use that same word,
in medicine today,

that we think the genome will drive
the personalization of medicine.

But of course the genome
is just the bottom

of a long chain of being, as it were.

That chain of being, really the first
organized unit of that, is the cell.

So, if we are really going to deliver
in medicine in this way,

we have to think of personalizing
cellular therapies,

and then personalizing
organ or organismal therapies,

and ultimately personalizing
immersion therapies for the environment.

So I think at every stage, you know –

there’s that metaphor,
there’s turtles all the way.

Well, in this, there’s
personalization all the way.

CA: So when you say
medicine could be a cell

and not a pill,

you’re talking about
potentially your own cells.

SM: Absolutely.
CA: So converted to stem cells,

perhaps tested against all kinds
of drugs or something, and prepared.

SM: And there’s no perhaps.
This is what we’re doing.

This is what’s happening,
and in fact, we’re slowly moving,

not away from genomics,
but incorporating genomics

into what we call multi-order,
semi-autonomous, self-regulating systems,

like cells, like organs,
like environments.

CA: Thank you so much.

SM: Pleasure. Thanks.

我想和你
谈谈医学的未来。

但在我这样做之前,我想
谈谈过去。

现在,
纵观近代医学史上的大部分时间,

我们一直

在用一个极其简单的模型来思考疾病和治疗。

事实上,这个模型非常简单

,你可以用六个词来概括

:有病、吃药、杀人。

现在,
这种模式占主导地位的原因

当然是抗生素革命。

你们中的许多人可能不知道这一点,
但我们恰巧正在庆祝

抗生素进入美国的一百周年。

但你所知道的

是,那次
介绍简直是变革性的。

在这里,你有一种化学物质,
要么来自自然界,要么

在实验室中人工合成

,它会穿过你的身体,

找到它的目标,

锁定它的目标

——微生物或微生物的某个部分——

然后 关上一把锁和一把钥匙

,灵巧无比,
专一性极强。

你最终会
患上一种以前致命的致命疾病

——肺炎、梅毒、肺结核——

并将其
转化为可治愈或可治疗的疾病。

你得了肺炎,

你吃青霉素,

你杀死微生物

,你就治愈了疾病。

这个想法是如此诱人

,锁和钥匙的隐喻

和杀死某些东西是如此有力,

以至于它真的席卷了生物学。

这是一次与众不同的转变。

在过去的 100 年里,我们真的一直在

尝试

在非传染性疾病

、糖尿病
、高血压和心脏病等慢性疾病中一遍又一遍地复制这种模型。

它奏效了,
但只是部分奏效了。

我来给你展示。

你知道,如果你把整个宇宙

的人体内

所有的化学反应
,你的身体能够进行的每一种化学反应,

大多数人认为这个数字
是百万量级的。

让我们称它为一百万。

现在你问这个问题,

整个药典,
所有药物化学实际上可以针对多少或部分反应?

这个数字是

250。其余的是化学黑暗。

换句话说,
你体内 0.025% 的化学反应

实际上可以
通过这种锁和钥匙机制进行靶向。

你知道,如果你
把人类生理学想象

成一个庞大的全球电话网络,

其中包含交互的节点
和交互的片段,

那么我们所有的药物化学

在该网络边缘的一个小角落,即外边缘
上运行。

就像我们所有的
药物化学

都是堪萨斯州威奇托的一名接线员,

他正在修补大约
10 或 15 条电话线。

那么我们如何处理这个想法呢?

如果我们重新组织这种方法会怎样?

事实上,事实证明
,自然界

让我们了解人们如何

以完全不同的方式看待疾病,

而不是疾病、药物、目标。

事实上,自然界
是按等级组织的,

不是向下,而是向上

,我们从一个称为细胞的自我调节、
半自主的单元开始。

这些自我调节、
半自主的单位

产生了自我调节、
半自主的单位,称为器官

,这些器官结合
起来形成了人类

,这些生物
最终生活在环境中,环境

部分是自我调节的
,部分是半自主的。 -自主性。

这个方案的好处是,
这种分层方案是

向上而不是向下构建

的,它允许我们

以不同的方式思考疾病。

以癌症之类的疾病为例。

自 1950 年代以来,

我们一直在拼命地尝试将
这种锁和钥匙模型应用于癌症。

我们已经尝试

使用各种化学疗法
或靶向疗法来杀死细胞,

而且正如我们大多数人所知,这是奏效的。

它适用于白血病等疾病。

它适用于某些形式
的乳腺癌,

但最终你会
遇到这种方法的天花板。

直到最近 10 年左右

,我们才开始
考虑使用免疫系统,

记住实际上癌细胞
不是在真空中生长的。

它实际上是在人类有机体中生长的。

你能利用机体的能力,

即人类
拥有免疫系统这一事实来攻击癌症吗?

事实上,它催生了一些最
引人注目的癌症新药。

最后
是环境水平,不是吗?

你知道,我们不认为癌症
会改变环境。

但是,让我举
一个高度致癌环境的例子。

这叫监狱。

你忍受孤独,抑郁,
坐月子,

然后你把它

卷起来,卷成一张小
白纸,

这是我们所知道的最有效的神经兴奋剂
之一,叫做尼古丁

,你再加上最
你知道的强效成瘾物质

,你有
一个致癌的环境。

但是您也可以拥有抗癌
环境。

例如,有人试图创造环境,

改变乳腺癌的荷尔蒙
环境。

我们正在尝试改变
其他形式癌症的代谢环境。

或者服用另一种疾病,比如抑郁症。

再一次,向上工作,

自 1960 年代和 1970 年代以来
,我们又一次拼命

地尝试关闭
在神经细胞之间起作用的分子——

血清素、多巴胺——

并试图以这种方式治愈抑郁症

,这很奏效,
但后来 达到了极限。

而且我们现在知道,你
真正需要做的

就是改变
器官、大脑的生理机能,

重新连接、重塑它,

当然,
我们知道,一项又一项的研究表明

,谈话疗法正是这样做的,

一项又一项的
研究表明,谈话疗法

与药物、药丸相结合,

确实
比单独使用任何一种都有效得多。

我们能想象一个更加身临其境的
环境来改变抑郁症吗?

你能锁定
引起抑郁的信号吗?

同样,沿着这个
层次结构的组织链向上移动。

也许这里真正危在旦夕

的不是药物本身,而是一个隐喻。

对于严重的
慢性退行性疾病——

肾衰竭、糖尿病、
高血压、骨关节炎——而不是杀死一些东西,

也许我们真正需要做的是
将比喻改为生长一些东西。

这也许是

重新构建我们对医学的思考的关键。

现在,大约 10 年前,这种改变

、创造感知
转变的

想法以一种非常个人化的方式回到了我的家中

大约 10 年前——
我一生中大部分时间都是跑步者——

我去跑步,周六早上跑步,

我回来后醒来
,我基本上不能动了。

我的右膝盖肿了起来

,你可以听到
骨头对骨头的不祥的嘎吱声。

作为一名医生的好处之一
是您可以订购自己的 MRI。

下周我做了核磁共振检查
,看起来像那样。

本质上,骨头之间的软骨半月板

已经完全撕裂
,骨头本身也被打碎了。

现在,如果你看着我
并感到抱歉,

让我告诉你一些事实。

如果我要
对这些观众中的每个人进行核磁共振检查,

你们中的 60% 会出现这样

的骨骼退化
和软骨退化迹象。

到 70 岁时,85% 的女性

会出现中度至重度
软骨退化。 观众中

50% 到 60%
的男性

也会有这样的迹象。

所以这是一种很常见的疾病。

嗯,作为一名医生的第二个好处

是你可以
对自己的疾病进行实验。

所以大约 10 年前我们开始了,

我们把这个过程
带进了实验室

,我们开始做简单的实验,

机械地
试图修复这种退化。

我们试图将化学物质
注入动物的膝盖空间

以试图逆转软骨退化,

并对一个非常漫长而痛苦的过程进行简短总结,

基本上它付诸东流。

没啥事儿。

然后大约七年前,
我们有一个来自澳大利亚的研究生。

澳大利亚人的好处

是他们习惯于
颠倒看世界。

(笑声

) 所以丹向我建议,“你知道,
也许这不是机械问题。

也许不是化学问题。
也许是干细胞问题。”

换句话说,他有两个假设。

第一,
有一种骨骼干细胞——

一种骨骼干细胞,它构成
了整个脊椎动物的骨骼、

骨骼、软骨和骨骼的纤维
成分,

就像血液中有一个干细胞,

就像有一个
神经系统中的干细胞。

第二,也许
是这种干细胞的退化或功能障碍

是导致骨软骨关节炎的原因,这
是一种非常常见的疾病。

所以真正的问题是,

当我们真正应该寻找细胞时,我们是否
在寻找药丸。

所以我们改变了我们的模型

,现在我们
开始寻找骨骼干细胞。

长话短说,

大约五年前,
我们发现了这些细胞。

它们生活在骨架内。

这是示意图,然后
是其中一个的真实照片。

白色的东西是骨头

,你看到的这些红色的柱子
和黄色的细胞


从一个单一的骨骼干细胞中产生的细胞——

软骨柱,
从一个细胞中出来的骨头柱。

这些细胞令人着迷。
他们有四个属性。

第一是他们住
在他们应该住的地方。

它们生活
在骨骼表面

下方,软骨下方。

你知道,在生物学中,
它是位置,位置,位置。

它们移动到适当的区域
并形成骨骼和软骨。

那是一个。

这是一个有趣的属性。

你可以把它们
从脊椎动物的骨骼中取出来,

你可以
在实验室的培养皿中培养它们

,它们都快要形成软骨了。

还记得我们如何不能
为爱或金钱形成软骨吗?

这些细胞正在死亡以形成软骨。

它们在自己
周围形成自己的软骨。

他们也是我们见过

的最有效
的骨折修复者,排名第三。

这是一根小骨头,
是我们折断的老鼠骨头

,然后让它自己愈合。

这些干细胞已经进入
并修复了,黄色的骨头

,白色的软骨,
几乎完全修复了。

如此之多,以至于如果你
用荧光染料标记它们,

你可以看到它们就像
某种特殊的细胞胶

进入骨折区域,在

局部固定它
然后停止它们的工作。

现在,第四个是最不祥的

,那就是随着年龄的增长,它们的数量会
急剧下降,急剧下降

,十倍,五十倍

所以真正发生的事情

是,我们发现自己
处于感知转变中。

我们一直在寻找药丸,

但最终找到了理论。

在某些方面,

我们已经
重新回到了这个想法:

细胞、有机体、环境,

因为我们现在正在
考虑骨干细胞,

我们
正在从细胞疾病的角度考虑关节炎。

然后下一个问题是,
有器官吗?

你能把
它建造成体外的器官吗?

您可以将软骨
植入创伤区域吗?

也许最有趣的是,

你能直接上升
并创造环境吗?

你知道,我们
知道运动会重塑骨骼,

但是拜托,我们
都不会运动。

那么你能想象被动
加载和卸载骨骼的方法,

以便你可以重建
或再生退化的软骨吗?

也许更有趣
,更重要

的是,问题是,你能
在医学之外更广泛地应用这个模型吗?

正如我之前所说,处于危险之中
的不是杀死一些东西,

而是增长一些东西。

我认为,它提出了一系列

关于我们
未来如何看待医学的最有趣的问题。

你的药物
可以是细胞而不是药丸吗?

我们将如何培养这些细胞?

我们会做些什么来阻止
这些细胞的恶性生长?

我们听说
了释放增长的问题。

我们能否将
自杀基因植入这些细胞中

以阻止它们生长?

你的药物会
不会是在体外制造

然后植入体内的器官?

这能阻止一些退化吗?

如果器官需要记忆怎么办?

在神经系统疾病的情况下,
其中一些器官具有记忆力。

我们如何才能将
这些记忆重新植入?

我们可以储存这些器官吗?

每个器官都必须
为个人开发

并放回原处吗?

也许最令人费解的是

,你的药物可以是一个环境吗?

你能为环境申请专利吗?

你知道,在每一种文化中,

萨满都将
环境用作药物。

我们可以想象我们的未来吗?

我谈了很多关于模型的事情。
我与模特开始了这次谈话。

所以让我以一些
关于模型构建的想法结束。

这就是我们作为科学家所做的事情。

你知道,当建筑师
建造模型时,

他或她试图向你展示
一个缩影世界。

但是当一位科学家正在建立一个模型时,

他或她正试图
以隐喻的方式向你展示这个世界。

他或她正试图创造
一种新的观看方式。

前者是规模转移。
后者是一种感知转变。

现在,抗生素

在我们思考医学的方式上产生了如此大的感知转变,
以至于它真的改变了、扭曲了、

非常成功地,就像我们
过去一百年来思考医学的方式一样。

但我们需要新的模式
来思考未来的医学。

这就是利害攸关的事情。

你知道,有
一个流行的比喻,

我们没有对疾病治疗
产生变革性

影响的原因

是因为我们没有
足够强大的药物

,这在一定程度上是正确的。

但也许真正的原因

是我们没有足够强大的
方法来思考药物。

拥有新药当然是件好事。

但也许真正危在旦夕的
是另外三个无形的 M:

机制、模型、隐喻。

谢谢你。

(掌声)

Chris Anderson:
我真的很喜欢这个比喻。

它是如何链接的?

科技界有很多

关于医疗个性化的讨论

,我们拥有所有这些数据
,未来的医疗

将专门针对您,
您的基因组,您当前的环境。

这适用于
你在这里的这个模型吗?

悉达多慕克吉:
这是一个非常有趣的问题。

我们

从基因组学的角度考虑了医学的个性化。

那是因为基因
是如此占主导地位的隐喻,

再一次,在今天的医学中使用同样的词

,我们认为基因组将推动
医学的个性化。

但当然,基因组
只是

一长串存在链的底部。

存在链,实际上是其中的第一个
有组织的单元,就是细胞。

因此,如果我们真的要
以这种方式提供医疗服务,

我们必须考虑个性化
细胞疗法,

然后个性化
器官或有机体疗法,

并最终
为环境提供个性化浸入式疗法。

所以我认为在每个阶段,你知道 -

有那个比喻,
一路都有海龟。

好吧,在这方面,
一路有个性化。

CA:所以当你说
药物可能是细胞

而不是药丸时,

你是在谈论
可能是你自己的细胞。

SM:当然。
CA:所以转化为干细胞,

也许对
各种药物或其他东西进行了测试,并做好了准备。

SM:也许没有。
这就是我们正在做的事情。

这就是正在发生的事情
,事实上,我们正在慢慢地移动,

不是远离基因组学,
而是将基因组学

整合到我们所谓的多级、
半自主、自我调节系统中,

比如细胞、器官
、环境。

CA:非常感谢。

SM:很高兴。 谢谢。