You can grow new brain cells. Heres how Sandrine Thuret

Can we, as adults, grow new nerve cells?

There’s still some confusion
about that question,

as this is a fairly new field of research.

For example, I was talking
to one of my colleagues, Robert,

who is an oncologist,

and he was telling me,

“Sandrine, this is puzzling.

Some of my patients that have been told
they are cured of their cancer

still develop symptoms of depression.”

And I responded to him,

“Well, from my point of view
that makes sense.

The drug you give to your patients
that stops the cancer cells multiplying

also stops the newborn neurons
being generated in their brain.”

And then Robert looked at me
like I was crazy and said,

“But Sandrine, these are adult patients –

adults do not grow new nerve cells.”

And much to his surprise, I said,
“Well actually, we do.”

And this is a phenomenon
that we call neurogenesis.

[Neurogenesis]

Now Robert is not a neuroscientist,

and when he went to medical school
he was not taught what we know now –

that the adult brain
can generate new nerve cells.

So Robert, you know,
being the good doctor that he is,

wanted to come to my lab

to understand the topic
a little bit better.

And I took him for a tour

of one of the most exciting
parts of the brain

when it comes to neurogenesis –

and this is the hippocampus.

So this is this gray structure
in the center of the brain.

And what we’ve known already
for very long,

is that this is important for learning,
memory, mood and emotion.

However, what we
have learned more recently

is that this is one of the unique
structures of the adult brain

where new neurons can be generated.

And if we slice through the hippocampus

and zoom in,

what you actually see here in blue

is a newborn neuron
in an adult mouse brain.

So when it comes to the human brain –

my colleague Jonas Frisén
from the Karolinska Institutet,

has estimated that we produce
700 new neurons per day

in the hippocampus.

You might think this is not much,

compared to the billions
of neurons we have.

But by the time we turn 50,

we will have all exchanged the neurons
we were born with in that structure

with adult-born neurons.

So why are these new neurons important
and what are their functions?

First, we know that they’re important
for learning and memory.

And in the lab we have shown

that if we block the ability
of the adult brain

to produce new neurons in the hippocampus,

then we block certain memory abilities.

And this is especially new and true
for spatial recognition –

so like, how you navigate
your way in the city.

We are still learning a lot,

and neurons are not only important
for memory capacity,

but also for the quality of the memory.

And they will have been helpful
to add time to our memory

and they will help differentiate
very similar memories, like:

how do you find your bike

that you park at the station
every day in the same area,

but in a slightly different position?

And more interesting
to my colleague Robert

is the research we have been doing
on neurogenesis and depression.

So in an animal model of depression,

we have seen that we have
a lower level of neurogenesis.

And if we give antidepressants,

then we increase the production
of these newborn neurons,

and we decrease
the symptoms of depression,

establishing a clear link
between neurogenesis and depression.

But moreover, if you
just block neurogenesis,

then you block the efficacy
of the antidepressant.

So by then, Robert had understood

that very likely his patients
were suffering from depression

even after being cured of their cancer,

because the cancer drug had stopped
newborn neurons from being generated.

And it will take time
to generate new neurons

that reach normal functions.

So, collectively, now we think
we have enough evidence

to say that neurogenesis
is a target of choice

if we want to improve
memory formation or mood,

or even prevent the decline
associated with aging,

or associated with stress.

So the next question is:

can we control neurogenesis?

The answer is yes.

And we are now going to do a little quiz.

I’m going to give you a set
of behaviors and activities,

and you tell me if you think
they will increase neurogenesis

or if they will decrease neurogenesis.

Are we ready?

OK, let’s go.

So what about learning?

Increasing?

Yes.

Learning will increase the production
of these new neurons.

How about stress?

Yes, stress will decrease the production
of new neurons in the hippocampus.

How about sleep deprivation?

Indeed, it will decrease neurogenesis.

How about sex?

Oh, wow!

(Laughter)

Yes, you are right, it will increase
the production of new neurons.

However, it’s all about balance here.

We don’t want to fall in a situation –

(Laughter)

about too much sex
leading to sleep deprivation.

(Laughter)

How about getting older?

So the neurogenesis rate
will decrease as we get older,

but it is still occurring.

And then finally, how about running?

I will let you judge that one by yourself.

So this is one of the first studies

that was carried out by one of my mentors,
Rusty Gage from the Salk Institute,

showing that the environment
can have an impact

on the production of new neurons.

And here you see a section
of the hippocampus of a mouse

that had no running wheel in its cage.

And the little black dots you see
are actually newborn neurons-to-be.

And now, you see a section
of the hippocampus of a mouse

that had a running wheel in its cage.

So you see the massive increase

of the black dots representing
the new neurons-to-be.

So activity impacts neurogenesis,
but that’s not all.

What you eat will have an effect

on the production of new neurons
in the hippocampus.

So here we have a sample of diet –

of nutrients that have been shown
to have efficacy.

And I’m just going
to point a few out to you:

Calorie restriction of 20 to 30 percent
will increase neurogenesis.

Intermittent fasting –
spacing the time between your meals –

will increase neurogenesis.

Intake of flavonoids,

which are contained
in dark chocolate or blueberries,

will increase neurogenesis.

Omega-3 fatty acids,

present in fatty fish, like salmon,

will increase the production
of these new neurons.

Conversely, a diet rich
in high saturated fat

will have a negative impact
on neurogenesis.

Ethanol – intake of alcohol –
will decrease neurogenesis.

However, not everything is lost;

resveratrol, which is
contained in red wine,

has been shown to promote
the survival of these new neurons.

So next time you are at a dinner party,

you might want to reach for this possibly
“neurogenesis-neutral” drink.

(Laughter)

And then finally,
let me point out the last one –

a quirky one.

So Japanese groups are fascinated
with food textures,

and they have shown that actually
soft diet impairs neurogenesis,

as opposed to food that requires
mastication – chewing – or crunchy food.

So all of this data,

where we need to look
at the cellular level,

has been generated using animal models.

But this diet has also been given
to human participants,

and what we could see is that
the diet modulates memory and mood

in the same direction
as it modulates neurogenesis,

such as: calorie restriction
will improve memory capacity,

whereas a high-fat diet will exacerbate
symptoms of depression –

as opposed to omega-3 fatty acids,
which increase neurogenesis,

and also help to decrease
the symptoms of depression.

So we think that the effect of diet

on mental health, on memory and mood,

is actually mediated by the production
of the new neurons in the hippocampus.

And it’s not only what you eat,

but it’s also the texture
of the food, when you eat it

and how much of it you eat.

On our side – neuroscientists
interested in neurogenesis –

we need to understand better
the function of these new neurons,

and how we can control their survival
and their production.

We also need to find a way to protect
the neurogenesis of Robert’s patients.

And on your side –

I leave you in charge
of your neurogenesis.

Thank you.

(Applause)

Margaret Heffernan:
Fantastic research, Sandrine.

Now, I told you you changed my life –

I now eat a lot of blueberries.

Sandrine Thuret: Very good.

MH: I’m really interested
in the running thing.

Do I have to run?

Or is it really just
about aerobic exercise,

getting oxygen to the brain?

Could it be any kind of vigorous exercise?

ST: So for the moment,

we can’t really say
if it’s just the running itself,

but we think that anything that indeed
will increase the production –

or moving the blood flow to the brain,

should be beneficial.

MH: So I don’t have to get
a running wheel in my office?

ST: No, you don’t!

MH: Oh, what a relief! That’s wonderful.

Sandrine Thuret, thank you so much.

ST: Thank you, Margaret.

(Applause)

作为成年人,我们能长出新的神经细胞吗?

这个问题仍然存在一些
混淆,

因为这是一个相当新的研究领域。

例如,我和
我的一位同事罗伯特交谈时,

他是一名肿瘤学家

,他告诉我,

“桑德琳,这令人费解。

我的一些患者被告知
他们的癌症已经治愈,但

仍然会出现以下症状 沮丧。”

我回答他,

“嗯,从我的角度来看
,这是有道理的。

你给病人服用
的阻止癌细胞增殖的药物

也会阻止新生神经元
在他们的大脑中产生。”

然后罗伯特看着我,
就像我疯了一样,说:

“但是桑德琳,这些是成年患者——

成年人不会长出新的神经细胞。”

令他吃惊的是,我说,
“事实上,我们做到了。”


就是我们称之为神经发生的现象。

[神经发生]

现在罗伯特不是神经科学家

,当他上医学院时,
他没有学到我们现在知道的东西

——成人大脑
可以产生新的神经细胞。

所以罗伯特,你知道,
作为一个好医生,他

想来我的实验室更好

地理解这个话题
。 当谈到神经发生时,

我带他参观了大脑

中最令人兴奋的
部分之一

——这就是海马体。

这就是
大脑中心的灰色结构。

我们早就知道的

是,这对学习、
记忆、情绪和情感很重要。

然而,我们
最近了解到的

是,这是
成人大脑

中可以产生新神经元的独特结构之一。

如果我们切开海马体

并放大,

你实际看到的蓝色


成年小鼠大脑中的一个新生神经元。

因此,谈到人脑——


来自卡罗林斯卡学院的同事 Jonas

Frisén 估计,我们
每天在海马体中产生 700 个新的神经元

与我们拥有的数十亿
个神经元相比,您可能认为这并不多。

但是到我们 50 岁时,

我们都将
在这种结构中出生时拥有的神经元

与成人出生的神经元进行交换。

那么为什么这些新神经元很重要
,它们的功能是什么?

首先,我们知道它们
对学习和记忆很重要。

在实验室中,我们已经证明

,如果我们
阻止成人大脑

在海马体中产生新神经元的

能力,那么我们就会阻止某些记忆能力。

这对于空间识别来说尤其新颖和真实

——就像
你在城市中导航的方式一样。

我们仍在学习很多东西

,神经元不仅
对记忆容量很重要,

而且对记忆的质量也很重要。

它们将有助于
为我们的记忆增加时间

,它们将有助于区分
非常相似的记忆,例如:

你如何

找到你每天停在车站的自行车
在同一区域,

但位置略有不同?

我的同事罗伯特更感兴趣的

是我们一直在做的
关于神经发生和抑郁症的研究。

因此,在抑郁症的动物模型中,

我们已经看到我们
的神经发生水平较低。

如果我们给予抗抑郁药,

那么我们会
增加这些新生神经元的产生

,我们会
减轻抑郁症的症状,从而

在神经发生和抑郁症之间建立明确的联系。

但此外,如果你
只是阻断神经发生,

那么你就会阻断
抗抑郁药的功效。

所以到那时,罗伯特已经明白

,即使在癌症治愈后,他的病人
也很可能患有抑郁症

因为抗癌药物已经阻止了
新生神经元的产生。

并且需要时间

产生达到正常功能的新神经元。

因此,总的来说,现在我们认为
我们有足够的

证据表明,

如果我们想改善
记忆形成或情绪,

甚至防止
与衰老

或压力相关的衰退,神经发生是一个选择目标。

所以下一个问题是:

我们能控制神经发生吗?

答案是肯定的。

我们现在要做一个小测验。

我将给你一
组行为和活动

,你告诉我你认为
它们会增加神经

发生还是会减少神经发生。

我们准备好了吗?

好的,我们走吧。

那么学习呢?

增加?

是的。

学习将
增加这些新神经元的产生。

压力如何?

是的,压力会减少
海马体中新神经元的产生。

睡眠不足怎么办?

事实上,它会减少神经发生。

性呢?

哦,哇!

(笑声)

是的,你是对的,它会
增加新神经元的产生。

然而,这一切都与平衡有关。

我们不想陷入这样的境地——

(笑声

) 过多的性行为会
导致睡眠不足。

(笑声)

变老怎么样?

因此,
随着年龄的增长,神经发生率会降低,

但它仍在发生。

最后,跑步怎么样?

我会让你自己判断一个。

因此,这

是我的一位导师、
来自索尔克研究所的 Rusty Gage 进行的首批研究之一,

表明环境
会对

新神经元的产生产生影响。

在这里你可以看到
老鼠的海马体部分,

它的笼子里没有跑轮。

你看到的小黑点
实际上是新生的神经元。

现在,你看到
了一只老鼠的海马体部分,

它的笼子里有一个跑轮。

所以你会看到

代表新神经元的黑点大量增加。

所以活动会影响神经发生,
但这还不是全部。

你吃的东西会对海马体

中新神经元的产生产生影响

所以这里我们有一个饮食样本——

已经证明有功效的营养素

我只想
向你指出一些:

20% 到 30% 的卡路里限制
会增加神经发生。

间歇性禁食——
两餐之间的间隔时间——

会增加神经发生。

摄入

黑巧克力或蓝莓中所含的类黄酮

会增加神经发生。

存在于多脂鱼类(如鲑鱼)中的 Omega-3 脂肪酸


增加这些新神经元的产生。

相反,
富含高饱和脂肪的饮食

会对神经发生产生负面影响

乙醇——摄入酒精——
会减少神经发生。

但是,并非一切都丢失了。

红酒中含有的白藜芦醇

已被证明可以促进
这些新神经元的存活。

所以下次你参加晚宴时,

你可能想喝这种可能是
“神经发生中性”的饮料。

(笑声

) 最后,
让我指出最后一个——

一个古怪的。

所以日本团体对食物质地很着迷

,他们已经证明,实际上
软饮食会损害神经发生,

而不是需要
咀嚼的食物——咀嚼——或松脆的食物。

因此

,我们需要
查看细胞水平

的所有这些数据都是使用动物模型生成的。

但是这种饮食也被给予
了人类参与者

,我们可以看到
,饮食调节记忆和情绪

的方向
与调节神经发生的方向相同,

例如:限制卡路里
会提高记忆能力,

而高脂肪饮食会 加剧
抑郁症的症状

  • 与 omega-3 脂肪酸相反,
    它可以增加神经发生

,也有助于减轻
抑郁症的症状。

所以我们认为饮食

对心理健康、记忆力和情绪

的影响实际上是由
海马体中新神经元的产生介导的。

这不仅是你吃的东西,

还有
食物的质地,你什么时候吃,吃

了多少。

在我们这边——
对神经发生感兴趣的神经科学家——

我们需要更好地了解
这些新神经元的功能,

以及我们如何控制它们的生存
和生产。

我们还需要找到一种方法来保护
罗伯特的病人的神经发生。

在你这边——

我让你
负责你的神经发生。

谢谢你。

(掌声)

Margaret Heffernan:
出色的研究,Sandrine。

现在,我告诉过你你改变了我的生活——

我现在吃了很多蓝莓。

Sandrine Thuret:非常好。

MH:我真的对跑步很感兴趣

我必须跑吗?

还是真的
只是有氧运动,

为大脑提供氧气?

会不会是某种剧烈运动?

ST:所以目前,

我们真的不能说
这是否只是跑步本身,

但我们认为任何确实
会增加产量——

或将血液流向大脑的东西

都应该是有益的。

MH:所以我不必
在我的办公室里安装一个跑轮?

ST:不,你没有!

MH:哦,真是一种解脱! 那好极了。

Sandrine Thuret,非常感谢。

ST:谢谢你,玛格丽特。

(掌声)