We Hold A 3D Bioprinting Breakthrough In Our Hands

every day

most of us used to be some piece of

technology that could be key

to treating and curing disease

developing new drugs

and maybe saving a lot of lives

you might carry it around with you in

your backpack or a handbag

might be in your car you might keep it

on your desk at work

now it’s not a computer it’s not your

smartphone

it’s hand sanitizer

now you might be thinking about how in

the late 1800s

when physicians started sanitizing their

hands with antiseptics between treating

patients

mortality rates in hospitals plummeted

that’s not what i have in mind hand

sanitizer is not going to transform

global health in that capacity any

further

so why do i say hand sanitizer could

lead to breakthroughs in medicine

and maybe save a lot of lives

it’s because hand sanitizer has inspired

the development of a new

3d bio printing technology that gives

researchers practically unlimited

freedom

to perform experiments in ways that are

otherwise impossible

i believe this new freedom will unleash

the creativity and productivity of

researchers

as they develop and test new therapies

and study the the fundamentals of tissue

malfunction

now if you don’t know much about 3d

bioprinting or 3d printing more

generally think of it like this

to create a 3d structure of my own

design i need to take

a liquid and push it through a

translating nozzle

and that liquid has to stay right where

i put it until

it turns into a solid and by laying down

layer after layer

of liquid that rapidly turns into solid

i build up a 3d structure

this simple picture captures most of 3d

printing out there

where the liquid that turns into a solid

is just melted plastic that rapidly

cools and solidifies

so it’s 3d bio printing i mean you can’t

just

melt living tissue push it through a

nozzle

well 3d bioprinting the liquid i push

through the nozzle is a mixture of

living cells

and all the materials they need to live

and the problem

is that this liquid doesn’t rapidly

solidify and hold its shape like melted

plastic

and this is where hand sanitizer comes

in

to understand how hand sanitizer solves

this problem

let’s think about what makes hand

sanitizer unique

imagine walking down the aisles of the

grocery store the pharmacy

and seeing all the personal care

products lining the shelves

shampoo conditioner lotion body wash

liquid soap and hand sanitizer

what’s different about how hand

sanitizer looks

if you haven’t thought of it yet the

answer i’m looking for is bubbles

you never see bubbles trapped in bottles

of all those other

products but you always see bubbles

trapped in bottles of hand sanitizer

those bubbles teach us that hand

sanitizer has unique physical properties

that those other products lack those

bubbles are the key

to turning hand sanitizer into a tool

for biomedical research

now there’s an entire field of physics

devoted to studying materials like hand

sanitizer

formally it’s called soft matter physics

those of us in the field sometimes call

it squishy physics

and in the world of squishy physics

decades of research and debate

has gone into understanding materials

like hand sanitizer

we asked simple questions like are they

solids are they slowly flowing fluids

maybe they’re really soft glasses and

what gives them their properties

it’s answers to questions like these

that teach us why we always see bubbles

trapped in bottles of hand sanitizer

but never in those other soft squishy

materials

in all solids liquids

and the soft squishy stuff in between

buoyancy forces dried

bubbles up you know this bubbles rise in

water

bubbles even rise in really viscous

fluids like molasses

and i hope this picture of molasses here

reminds you you never see bubbles

trapped in jars of molasses

so if bubbles rise in water and molasses

but they don’t rise in hand sanitizer

the hand sanitizer itself

must be resisting the force holding the

bubble still

materials that can resist forces while

sitting still are solids

think about it you push on a fluid it

flows you push on a solid

it deflects or bends a little bit

but it comes to rest and resists the

force

sitting still bubbles

in hand sanitizer are at rest sitting

still

resisted by the hand sanitizer hand

sanitizer must be a solid

but i can pour hand sanitizer i can pump

it up through a nozzle i can smear it

all over my hands

that seems like a fluid well that’s

right

hand sanitizer is a fluid when it’s

flowing

both perspectives are correct hand

sanitizer is a solid when sitting still

and a fluid when flowing

now to understand how that works and to

convince yourself it’s true let’s think

of another material that’s a solid when

sitting still in the fluid when flowing

it’s the ball pit kids play in when kids

lay still in a ball pit

the ball pit can support their weight

acting like a solid

but when kids start stroking the arms

and kicking their legs

they can literally swim when flowing

they act the

the ball pit acts like a fluid

hand sanitizer is just a microscopic

version of that ball pit

in fact hand sanitizer is made from tiny

little microscopic balls all packed

together

the only difference is those little

balls are soft and squishy and swell up

in water-based liquids

so now you know how hand sanitizer works

how do we turn it into a tool for

biomedical research

well here’s the idea if i can randomly

disperse bubbles throughout a bottle of

hand sanitizer

what if i place them at carefully chosen

locations in 3d space to create a

structure

i’d be 3d printing with air

and if i can randomly place kids

anywhere in a ball pit

what if i place those kids at carefully

chosen locations in 3d space to create a

structure

i’d be 3d printing with kids

if i can 3d print with air into hand

sanitizer or kids with a ball pit

why can’t i do the same thing with

living cells i just have to develop a

material

that has the physical properties of hand

sanitizer but all the chemical

properties of the liquids we typically

grow cells in

so that’s what we did for the past five

years my lab at the university of

florida has been developing

a cell culture medium that has the

physical properties of hand sanitizer

here you can see what it looks like to

3d print into this material

we can create 3d structures of high

complexity

out of nothing but liquid trapped in

space just like bubbles in the hand

sanitizer

just like kids in the ball pit with this

method

we can 3d print precise complex

structures out of living cells

just look at these tiny matryoshka dolls

nested inside one another

the smallest one is about the size of a

grain of rice

now with these tools we’ve conducted a

lot of different investigations

here you see microscopic examples of our

3d printing method at work

we’ve developed tiny models of the human

liver to test compounds for toxicity

we studied how precisely fabricated

cellular structures evolve and shape

under the forces cells generate

we’ve created models of developing

tissue hoping one day to use our tools

to understand critical aspects of

embryonic development in one of our

investigations

we 3d printed model brain tumors

surrounded by

immune cells the idea was inspired by

our colleagues in the department of

neurosurgery

doctors catherine flores and dwayne

mitchell a few years ago

they developed a new type of

immunotherapy effective against brain

tumors

they were targeting a type of brain

cancer called glioblastoma

now some cancers aren’t susceptible to

the revolutionary new immunotherapies

that have been

developed recently and glioblastoma is

one of them

by infecting mice with glioblastoma and

testing hypothesis after hypothesis

they eventually came up with an

effective immunotherapeutic strategy

the process took years now imagine

if they could have placed the cells

anywhere they wanted in the mouse and

seen directly into the mouse’s brain at

high magnification

and watch precisely as the immune cells

attacked the tumor

and rapidly rapidly tested their

hypotheses and harvested the cells

whenever they wanted to for biochemical

testing

in other words imagine if they could do

experiments that replicate what happens

in the mouse

without all the restrictions of working

with mice

their discovery could have been made in

a matter of weeks or months not years

teaming up with them our labs proved

that this fantasy may soon be reality

my phd student cameron morley 3d printed

hundreds of glioblastoma

glioblastoma tumor models surrounded by

immune cells

varying things like their proximity to

the tumor and

testing all of the necessary controls

and replicates

he performed time-lapse imaging on a

microscope

at high resolution watching in detail

how the

immune cells attack the tumor with a

level of precision you just can’t get

when working with a mouse

to test whether the cells in our hand

sanitizer material behave the way they

do in a mouse

cameron used our printer to harvest the

cells

you can see that by embedding cells in a

material like hand sanitizer

we’re able to uh suck suck

the immune cells out and harvest the

tumors in fact

this process is a lot like pumping

material up through a

hand sanitizer uh dispenser except in

our case

the needle the the dispenser tube is a

fine needle about as narrow as a human

hair

precisely positioned by a 3d printer

sitting on top of a microscope we’re

able to

move this needle around sucking out all

the immune cells

and then come back and suck out the

tumor

cameron harvested the cells from his

hundreds of different experiments

handed them off to catherine flores lab

for biochemical analysis

and based on their gene expression

profiles we found that

cells in the hands sanitizer material

indeed behave the way they do in the

mouse

now this first investigation of

glioblastoma was a critical first step

to convincing the world and convincing

ourselves that this crazy idea of

turning hand sanitizer into a tool for

biomedical research

would enable us to perform experiments

that reproduce what happens in living

tissue

but without all the restrictions of

working with real live animals

we hope with enough examples like these

we can convince the whole world

to use our technology now most the

biomedical research world out there

recognizes the critical importance of

studying cells in 3d contexts

it’s the first step toward mimicking the

body

but they also realize that it’s usually

not worth the time effort and expense

to create 3d structures out of living

cells it’s really hard to do

i think what i think we’ve made it a lot

easier to do

taking inspiration from the bubbles and

hand sanitizer

developing new 3d bio printing

technology combined with a 3d culture

medium

today we’re 3d printing the experiments

we imagine

rapidly testing our hypotheses and soon

i hope

accelerating the pace of life-saving

discoveries and biomedical research

我们中的大多数人曾经每天都是一些

技术,它可能是

治疗和治愈疾病的关键,

开发新药

,可能挽救很多生命

可能会

在工作时将它放在您的办公桌上

现在它不是计算机 它不是您的

智能手机

它是洗手液

现在您可能正在考虑在

1800 年代后期,

当医生开始

在治疗患者之间用防腐剂消毒双手时

,医院的死亡率直线下降

,这不是什么 我认为

洗手液不会

以这种能力进一步改变全球健康,

所以我为什么说洗手液可能

会导致医学突破

并可能挽救很多生命

,因为洗手液激发

了新 3d 的开发

生物打印技术为

研究人员提供了几乎无限的

自由

,以我认为不可能的方式进行

实验 e 这种新的自由将释放

研究人员的创造力和生产力,

因为他们现在开发和测试新疗法

并研究组织

功能

障碍的

基本原理

我自己设计的 3d 结构

我需要取

一种液体并将其推过一个

平移喷嘴,

并且该液体必须保持在

我放置它的位置

直到它变成固体,然后

一层又一层地铺

下迅速变成的液体 固体

我建立了一个 3d 结构

这张简单的图片捕捉了大部分 3d

打印在

那里变成固体的液体

只是熔化的塑料,它会迅速

冷却和固化,

所以它是 3d 生物打印我的意思是你不能

只是

熔化活组织推动 它通过一个

喷嘴

井 3d 生物打印 我通过喷嘴推动的液体

活细胞

和它们生存所需的所有材料的混合物,

问题

是这种液体 不会

像熔化的塑料一样迅速凝固并保持其形状

,这就是洗手液的用武之地

以了解洗手液如何解决

这个问题

让我们想想是什么让洗手

液与众不同

想象走在杂货店药房的过道上

,看到所有 货架上的个人护理

产品

洗发水 护发素 乳液 沐浴露 洗手

液和洗手液 洗手

液的外观

有什么不同 如果您还没有想到的话

我正在寻找的答案是气泡

你永远不会看到气泡被困在瓶子

里 所有这些其他

产品,但你总是会看到

洗手液瓶里

有气泡这些气泡告诉我们

洗手液具有独特的物理特性

,而其他产品没有这些

气泡是

把洗手液变成

生物医学研究工具的关键,

现在有一个完整的 物理领域

致力于研究洗手液等材料,

正式名称为软垫 物理

我们这些在该领域的人有时

称其为软物理

,在软物理世界中,

数十年的研究和辩论

已经进入了理解洗手液等材料的过程中,

我们提出了简单的问题,比如它们是

固体还是缓慢流动的流体,

也许它们是 真正柔软的玻璃

以及赋予它们特性的

原因是对此类问题的回答,这些

问题告诉我们为什么我们总是看到气泡

被困在洗手液瓶中,

但从未出现

在所有固体液体

中的其他柔软粘稠材料中,以及介于浮力之间的柔软粘稠物质中

干了的

气泡你知道这些气泡会在水中上升

气泡甚至会在糖蜜等非常粘稠的

液体中上升

,我希望这里的糖蜜图片

提醒你你永远不会看到气泡

被困在糖蜜罐中,

所以如果气泡在水中和糖蜜中上升,

但它们不会 t 上升洗手

液洗手液本身

必须抵抗保持

气泡静止

材料的力 静坐时可以抵抗力

想想看 你推流体它

流动 你推一个固体

它会偏转或弯曲一点,

但它会静止并抵抗力

静止不动 洗手液中的气泡静止 静止不动

被洗手液抵制 洗手

液必须是固体,

但我可以倒洗手液 我可以通过喷嘴将其泵送 我可以将

它涂抹在我的手上

,这看起来像是一个流体井

右手洗手液在两个都流动时是

流体 观点是

正确的 当孩子们

静静地躺在球坑里时

,球坑可以像固体一样支撑他们的体重,

但是当孩子们开始抚摸手臂

和踢腿时,

他们真的可以游泳了 当

它们

流动时,球坑就像一个流体

洗手液只是

那个球坑

的微观版本实际上洗手液是由微小的

微小球组成的,它们全部打包

在一起唯一的区别是那些小

球柔软、柔软、膨胀

在水基液体中,

所以现在您知道洗手液是如何工作的

我们如何将其变成

生物医学

研究的工具 如果我可以

将气泡随机分散在一瓶

洗手液

中 如果我将它们放置在精心挑选的

位置会怎样 在 3d 空间中创建

结构,

我将使用空气进行 3d 打印

,如果我可以将孩子随机放置

在球坑中的任何位置,

如果我将这些孩子放置

在 3d 空间中精心选择的位置以创建

结构,

我将使用 3d 打印

如果我可以用空气进入

洗手液或带球坑的孩子 3D 打印孩子,

为什么我不能用活细胞做同样的事情

我只需要开发

一种具有物理特性的材料

洗手液的所有化学

特性,但我们通常在其中培养细胞的液体的所有化学特性,

所以这就是我们在过去五年中所做的,

我在佛罗里达大学的实验室

一直在开发

一种具有

洗手液物理特性的细胞培养基

可以看到

3d 打印到这种材料中的样子

我们可以创建高度复杂的 3d 结构,

除了液体被困在

空间中,就像洗手液中的气泡

一样,就像孩子们在球坑里一样使用这种

方法,

我们可以 3d 打印精确

活细胞的复杂结构

看看这些相互嵌套的小俄罗斯套娃

最小的只有

一粒米那么大

现在使用这些工具我们已经进行了

很多不同的研究

在这里你可以看到我们

3d 的微观例子 工作中的打印方法

我们开发了人类

肝脏的微型模型来测试化合物的毒性

我们研究了如何精确制造

细胞结构

在细胞产生的力下进化和成形

我们已经创建了发育组织模型,

希望有一天能够在我们的一项研究中使用我们的工具

来了解

胚胎发育的关键方面

我们 3D 打印了

免疫细胞包围的脑肿瘤模型 这个想法的灵感来自

我们

神经外科的同事

凯瑟琳·弗洛雷斯和德韦恩·

米切尔几年前,

他们开发了一种

对脑肿瘤有效的新型免疫疗法

他们针对的是一种

称为胶质母细胞瘤的脑癌

现在有些癌症

对革命性的新免疫疗法不敏感

最近开发的,胶质母细胞瘤就是

其中之一,

通过用胶质母细胞瘤感染小鼠并在

假设后测试假设,

他们最终提出了一种

有效的免疫治疗策略,

这个过程需要数年时间现在想象

他们是否可以将细胞放置

在小鼠体内任何他们想要的地方,并且

直接看到鼠标 以

高放大

倍率观察大脑并精确观察免疫细胞

攻击肿瘤

并快速快速测试它们的

假设并在需要时收获细胞

进行生化

测试换句话说,想象一下他们是否可以进行

实验来复制小鼠身上发生的事情

而无需所有 与老鼠合作的限制

他们的发现可能

在几周或几个月内

完成 与他们合作我们的实验室

证明这个幻想可能很快就会成为现实

我的博士生 Cameron morley 3d 打印了

数百个

被免疫系统包围的胶质母细胞瘤胶质母细胞瘤模型

细胞会

改变它们与肿瘤的接近程度,

测试所有必要的控制

和复制,

他在

显微镜

上以高分辨率进行延时成像,详细

观察免疫细胞如何以

您无法做到的精确度攻击肿瘤 用

鼠标测试我们洗手液中的细胞是否

材料的行为方式与

它们在老鼠

身上的行为方式 卡梅伦使用我们的打印机来收获

细胞

你可以看到,通过将细胞嵌入到

洗手液等材料中,

我们能够呃吸

出免疫细胞并收获

肿瘤,事实上

这个过程 很像

通过

洗手液分配器泵送材料,除了在

我们的例子

中针头分配器管是一根

细针,大约像人的头发一样细,

由坐在显微镜顶部的 3D 打印机精确定位,

我们

能够

移动这根针,吸出所有

的免疫细胞

,然后回来吸出

肿瘤,

cameron 从他

数百个不同的实验中收获细胞,

将它们交给凯瑟琳弗洛雷斯实验室

进行生化分析

,根据它们的基因表达谱,

我们发现

洗手液材料中的细胞

确实表现出它们在小鼠中的行为方式,

现在这项对

胶质母细胞瘤的首次调查是令人信服的关键

第一步 并说服

自己,

将洗手液变成生物医学研究工具的疯狂想法

将使我们能够进行实验

,重现活体组织中发生的情况,

但不受

与真实活体动物一起工作的所有限制,

我们希望有足够的这样的例子

我们可以说服

全世界使用我们的技术 现在大多数

生物医学研究界

都认识到

在 3D 环境中研究细胞的重要性,

这是模仿身体的第一步,

但他们也意识到这通常

不值得花费时间和精力

从活细胞中创建 3d 结构

真的很难做到

我认为我们已经让

从气泡和

洗手液中获取灵感变得容易得多

今天我们开发了新的 3d 生物打印技术和 3d 培养基 ‘正在 3d 打印

我们想象的实验,

快速测试我们的假设,很快

我希望

加速 拯救生命的

发现和生物医学研究的步伐