Biofuels and bioprospecting for beginners Craig A. Kohn

Transcriber: Andrea McDonough
Reviewer: Jessica Ruby

Your car,

the heating system in your house,

your gas stove.

Most of the energy you use

comes from fossil fuels,

which present a couple of problems.

First, there are limited supplies of fossil fuels,

so the more we use, the less we’ve got.

And second, the use of fossil fuels

is the main cause of climate change

because it releases large amounts

of carbon dioxide into the atmosphere.

Biofuels come from natural, renewable sources like plants,

so they have the potential to reduce our reliance

on those limited supply fossil fuels

and reduce the risk of climate change.

Most biofuels today are made from corn grain

that is fermented into ethanol.

But we have a limited supply of this corn,

so it’s not a solution to the limited supply

part of the quandary.

It also takes a lot of resources to grow corn grain.

Strike 2!

A potential solution:

Using cellulose instead of corn grain to make ethanol.

Cellulose is far more abundant than corn grain

and takes less energy to produce.

In fact, it’s the most abundant organic molecule on the planet!

Cellulose is the main ingredient

found in a plant’s cell wall.

Plants generate cellulose from water and carbon dioxide

during photosynthesis.

So, where as using fossil fuels produce carbon dioxide,

using cellulose-based ethanol might help remove

carbon dioxide from the atmosphere.

The main obstacle is that the cellulose molecule,

a long, connected chain of glucose sugar

protected by a tough, molecular sheath,

is difficult to break apart.

Creating cellulose-based ethanol

means first unwrapping that protective sheath

and then chopping up the cellulose

into its individual glucose molecule.

Only once we have unpacked each glucose molecule,

can we begin fermentation.

But some microorganisms,

like bacteria or fungi,

break down cellulose for energy all the time.

For example, dairy cows eat foods

like hay or alfalfa, which are full of cellulose.

Microbes that live in their stomachs

produce an enzyme called cellulase,

which breaks apart the cellulose molecules

so that the cow can use what’s left for energy.

Researchers are now studying

these kinds of microorganisms

in the hopes of finding better ways

to break down cellulose

so we can use it for our own energy needs.

The solution, they think,

lies in finding microbes in nature that can produce

the kinds of cellulase enzymes that we need.

This process of searching for species in nature

that can produce valuable products

is called bioprospecting.

To test whether or not a sample of microbes

can break down cellulose effectively,

researchers first grow the microbe in a test tube.

Then, they add a source of cellulose

as the sole form of energy.

If the microbe can’t produce cellulase

and break down cellulose,

the test tube will remain unchanged.

But if the microbe produces the enzymes

we are looking for,

it will be able to break down cellulose,

use it for energy,

and thrive in its test tube environment.

If our microbial sample can break down

the cellulose in the test tube,

there is a chance we could use it to create

a renewable and sustainable source of fuel

for our cars from cellulose.

抄写员:Andrea McDonough
审稿人:Jessica Ruby

你的车,

你家的供暖系统,

你的燃气灶。

您使用的大部分能源

来自化石燃料,

这会带来一些问题。

首先,化石燃料的供应有限,

所以我们使用的越多,得到的就越少。

其次,化石燃料的使用

是气候变化的主要原因,

因为它

向大气中释放了大量的二氧化碳。

生物燃料来自植物等天然可再生资源,

因此它们有可能减少我们

对供应有限的化石燃料的依赖,

并降低气候变化的风险。

今天的大多数生物燃料都是

由发酵成乙醇的玉米粒制成的。

但是我们这种玉米的供应有限,

所以它不能解决供应有限

的困境。

种植玉米也需要大量资源。

罢工2!

一个潜在的解决方案:

用纤维素代替玉米粒来制造乙醇。

纤维素比玉米粒丰富得多

,生产所需的能量也更少。

事实上,它是地球上最丰富的有机分子!

纤维素是

植物细胞壁中的主要成分。

植物在光合作用过程中从水和二氧化碳中产生纤维素

因此,在使用化石燃料产生二氧化碳的情况下,

使用基于纤维素的乙醇可能有助于

从大气中去除二氧化碳。

主要的障碍是纤维素分子,

一种由坚韧的分子鞘保护的长而连接的葡萄糖链

很难分解。

制造基于纤维素的

乙醇意味着首先打开保护套

,然后将纤维素切碎

成单独的葡萄糖分子。

只有打开每个葡萄糖分子的包装,

我们才能开始发酵。

但是一些微生物,

如细菌或真菌,一直在

分解纤维素以获得能量。

例如,奶牛

吃干草或苜蓿等富含纤维素的食物。

生活在它们胃里的微生物会

产生一种叫做纤维素酶的酶,

它可以分解纤维素分子,

这样奶牛就可以利用剩下的东西来获取能量。

研究人员现在正在研究

这类微生物

,希望找到更好的方法

来分解纤维素,

以便我们可以将其用于我们自己的能源需求。

他们认为,解决方案

在于在自然界中寻找能够

产生我们需要的纤维素酶的微生物。

这种在自然界中寻找

能够生产有价值产品

的物种的过程称为生物勘探。

为了测试微生物样本是否

能有效分解纤维素,

研究人员首先在试管中培养微生物。

然后,他们添加了一种纤维素

作为唯一的能量形式。

如果微生物不能产生纤维素酶

和分解纤维素

,试管将保持不变。

但如果微生物产生

我们正在寻找的酶,

它将能够分解纤维素,

将其用作能量,

并在其试管环境中茁壮成长。

如果我们的微生物样本可以分解

试管中的纤维素,

我们就有机会利用它为我们的汽车制造

可再生和可持续的纤维素燃料来源