How nanoparticles could change the way we treat cancer Joy Wolfram

It was a Sunday afternoon
back in April of this year.

My phone was ringing,

I picked it up.

The voice said, “It’s Rebecca.

I’m just calling to invite you

to my funeral.”

I said, “Rebecca,
what are you talking about?”

She said, “Joy, as my friend,
you have to let me go.

It’s my time.”

The next day, she was dead.

Rebecca was 31 years old when she died.

She had an eight-year struggle
with breast cancer.

It came back three times.

I failed her.

The scientific community failed her.

And the medical community failed her.

And she’s not the only one.

Every five seconds,

someone dies of cancer.

Today, we medical
researchers are committed

to having Rebecca and people like her

be one of the last patients that we fail.

The US government alone has spent
over 100 billion on cancer research

since the 1970s,

with limited progress
in regards to patient survival,

especially for certain types
of very aggressive cancers.

So we need a change because, clearly,

what we’ve been doing so far
has not been working.

And what we do in medicine
is to send out firefighters,

because cancer is like a big fire.

And these firefighters
are the cancer drugs.

But we’re sending them out
without a fire truck –

so without transportation, without ladders

and without emergency equipment.

And over 99 percent of these firefighters
never make it to the fire.

Over 99 percent of cancer drugs
never make it to the tumor

because they lack transportation and tools

to take them to the location
they’re aiming for.

Turns out, it really is all about
location, location, location.

(Laughter)

So we need a fire truck
to get to the right location.

And I’m here to tell you
that nanoparticles are the fire trucks.

We can load cancer drugs
inside nanoparticles,

and nanoparticles
can function as the carrier

and necessary equipment

to bring the cancer drugs
to the heart of the tumor.

So what are nanoparticles,

and what does it really mean
to be nano-sized?

Well, there are many different
types of nanoparticles

made out of various materials,

such as metal-based nanoparticles

or fat-based nanoparticles.

But to really illustrate
what it means to be nano-sized,

I took one of my hair strands

and placed it under the microscope.

Now, I have very thin hair,

so my hair is approximately
40,000 nanometers in diameter.

So this means, if we take
400 of our nanoparticles

and we stack them on top of each other,

we get the thickness
of a single hair strand.

I lead a nanoparticle laboratory
to fight cancer and other diseases

at Mayo Clinic here in Jacksonville.

And at Mayo Clinic,

we really have the tools
to make a difference for patients,

thanks to the generous donations
and grants to fund our research.

And so, how do these nanoparticles
manage to transport cancer drugs

to the tumor?

Well, they have an extensive toolbox.

Cancer drugs without nanoparticles
are quickly washed out of the body

through the kidneys

because they’re so small.

So it’s like water going through a sieve.

And so they don’t really have time
to reach the tumor.

Here we see an illustration of this.

We have the firefighters,
the cancer drugs.

They’re circulating in the blood,

but they’re quickly
washed out of the body

and they don’t really end up
inside the tumor.

But if we put these cancer drugs
inside nanoparticles,

they will not get washed out by the body

because the nanoparticles are too big.

And they will continue
to circulate in the blood,

giving them more time to find the tumor.

And here we see the cancer drug,
the firefighters,

inside the fire truck, the nanoparticles.

They’re circulating in the blood,

they don’t get washed out

and they actually end up
reaching the tumor.

And so what other tools
do nanoparticles have?

Well, they can protect cancer drugs
from getting destroyed inside the body.

There are certain very important
but sensitive drugs

that are easily degraded
by enzymes in the blood.

So unless they have
this nanoparticle protection,

they will not be able to function.

Another nanoparticle tool
are these surface extensions

that are like tiny hands with fingers
that grab on to the tumor

and fit exactly onto it,

so that when the nanoparticles
are circulating,

they can attach onto the cancer cells,

buying the cancer drugs
more time to do their job.

And these are just some of the many tools
that nanoparticles can have.

And today,

we have more than 10 clinically approved
nanoparticles for cancer

that are given to patients
all over the world.

Yet, we have patients,
like Rebecca, who die.

So what are the major
challenges and limitations

with currently approved nanoparticles?

Well, a major challenge is the liver,

because the liver is the body’s
filtration system,

and the liver recognizes
and destroys foreign objects,

such as viruses, bacteria
and also nanoparticles.

And the immune cells in the liver
eat the nanoparticles,

preventing them from reaching the tumor.

And here we see an illustration
where the kidney is no longer a problem,

but these fire trucks, the nanoparticles,

get stuck in the liver

and, actually, less of them
end up reaching the tumor.

So a future strategy
to improve nanoparticles

is to temporarily disarm
the immune cells in the liver.

So how do we disarm these cells?

Well, we looked at drugs
that were already clinically approved

for other indications

to see if any of them
could stop the immune cells

from eating the nanoparticles.

And unexpectedly,
in one of our preclinical studies,

we found that a 70-year-old malaria drug

was able to stop the immune cells
from internalizing the nanoparticles

so that they could escape the liver

and continue their journey
to their goal, the tumor.

And here we see the illustration
of blocking the liver.

The nanoparticles don’t go there,

and they instead end up in the tumor.

So, sometimes, unexpected connections
are made in science

that lead to new solutions.

Another strategy
for preventing nanoparticles

from getting stuck in the liver

is to use the body’s own nanoparticles.

Yes – surprise, surprise.

You, and you and you, and all of us
have a lot of nanoparticles

circulating in our bodies.

And because they’re part of our bodies,

the liver is less likely
to label them as foreign.

And these biological nanoparticles
can be found in the saliva,

in the blood, in the urine,
in pancreatic juice.

And we can collect them from the body

and use them as fire trucks
for cancer drugs.

And in this case,

the immune cells in the liver
are less likely to eat

the biological nanoparticles.

So we’re using
a Trojan-horse-based concept

to fool the liver.

And here we see
the biological nanoparticles

circulating in the blood.

They don’t get recognized by the liver,

and they end up in the tumor.

And in the future,

we want to exploit
nature’s own nanoparticles

for cancer drug delivery,

to reduce side effects and save lives

by preventing the cancer drugs
from being in the wrong location.

However, a major problem has been:

How do we isolate these biological
nanoparticles in large quantities

without damaging them?

My lab has developed
an efficient method for doing this.

We can process large quantities
of liquids from the body

to produce a highly concentrated,
high-quality formulation

of biological nanoparticles.

And these nanoparticles
are not yet in clinical use,

because it takes an average of 12 years

to get something from the lab

to your medicine cabinet.

And this is the type of challenge
that requires teamwork

from scientists and physicians,

who dedicate their lives to this battle.

And we keep going,
thanks to inspiration from patients.

And I believe that if we keep working
on these nanomedicines,

we will be able to reduce harm
to healthy organs,

improve quality of life

and save future patients.

I like to imagine

that if these treatments
had been available for Rebecca,

that call from her

could have been an invitation

not to her funeral,

but her wedding.

Thank you.

(Applause)

那是
今年四月的一个周日下午。

我的电话响了,

我接了起来。

那个声音说:“我是丽贝卡。

我只是打电话邀请你

参加我的葬礼。”

我说:“丽贝卡,
你在说什么?”

她说:“乔伊,作为我的朋友,
你必须放开我

,是我的时候了。”

第二天,她就死了。

丽贝卡去世时年仅 31 岁。

她与乳腺癌抗争了八年

它回来了三遍。

我辜负了她。

科学界辜负了她。

医学界辜负了她。

而且她不是唯一一个。

每五秒钟

就有一人死于癌症。

今天,我们医学
研究人员

致力于让丽贝卡和像她

这样的人成为我们最后一批失败的患者之一。

自 1970 年代以来,仅美国政府就已
在癌症研究上花费了超过 1000 亿美元


在患者生存方面的进展有限,

特别是对于某些类型
的侵袭性非常强的癌症。

所以我们需要改变,因为很明显,

到目前为止我们一直在做的事情
并没有奏效。

而我们在医学上所做的
就是派出消防员,

因为癌症就像一场大火。

而这些消防员
就是抗癌药。

但是我们在
没有消防车的情况下将他们送出去——

所以没有交通工具,没有梯子

,也没有应急设备。

超过 99% 的消防员
从未到过火场。

超过 99% 的抗癌药物
从未进入肿瘤,

因为它们缺乏运输工具和

工具将它们带到
目标位置。

事实证明,这真的是关于
位置,位置,位置。

(笑声)

所以我们需要一辆消防车
才能到达正确的位置。

我在这里告诉
你纳米粒子就是消防车。

我们可以将抗癌药物装载
到纳米颗粒中

,纳米颗粒
可以作为载体

和必要的

设备将抗癌药物
带到肿瘤的心脏。

那么什么是纳米颗粒,

纳米尺寸的真正含义是什么?

嗯,有许多不同
类型的纳米粒子

由各种材料制成,

例如金属基纳米粒子

或脂肪基纳米粒子。

但为了真正
说明纳米尺寸的含义,

我拿了一根

头发放在显微镜下。

现在,我的头发很细,

所以我的头发直径大约为
40,000 纳米。

所以这意味着,如果我们取
400 个纳米粒子

并将它们堆叠在一起,

我们会得到
一根头发丝的粗细。

我在杰克逊维尔的梅奥诊所领导一个纳米粒子实验室
来对抗癌症和其他疾病

在梅奥诊所,

我们确实拥有为患者带来改变的
工具,

这要感谢慷慨的捐赠
和赠款来资助我们的研究。

那么,这些纳米颗粒是
如何将抗癌药物运送

到肿瘤的呢?

好吧,他们有一个广泛的工具箱。

不含纳米颗粒的抗癌药物
会通过肾脏迅速排出体外

因为它们太小了。

所以这就像水要过筛子一样。

所以他们真的没有时间
到达肿瘤。

在这里,我们看到了一个例子。

我们有消防员,
有抗癌药。

它们在血液中循环,

但很快就
被冲出体外

,它们并没有真正
进入肿瘤内部。

但是如果我们将这些抗癌药物
放入纳米颗粒中,

它们就不会被身体冲走,

因为纳米颗粒太大了。

而且它们会继续
在血液中循环,

让它们有更多的时间找到肿瘤。

在这里,我们看到了抗癌药物
,消防员,

在消防车内,纳米粒子。

它们在血液中循环,

不会被冲走

,最终会
到达肿瘤。

那么
纳米粒子还有哪些其他工具呢?

好吧,它们可以保护抗癌药物
在体内不被破坏。

有一些非常重要
但敏感的

药物很容易
被血液中的酶降解。

因此,除非它们具有
这种纳米颗粒保护,

否则它们将无法发挥作用。

另一种纳米粒子工具
是这些表面延伸

,就像用手指的小手
抓住肿瘤

并精确贴合在肿瘤上,

这样当纳米粒子
循环时,

它们可以附着在癌细胞上,

为抗癌药物
争取更多时间 他们的工作。

这些只是
纳米粒子可以拥有的众多工具中的一部分。

今天,

我们拥有 10 多种临床批准的
用于癌症的纳米颗粒,

这些纳米颗粒提供给
世界各地的患者。

然而,我们也有
像丽贝卡这样死去的病人。

那么

目前批准的纳米粒子的主要挑战和限制是什么?

嗯,一个主要的挑战是肝脏,

因为肝脏是人体的
过滤系统

,肝脏识别
和破坏异物,

例如病毒、细菌
和纳米颗粒。

肝脏中的免疫细胞会
吃掉纳米颗粒,

阻止它们到达肿瘤。

在这里,我们
看到了肾脏不再是问题的例子,

但是这些消防车,纳米粒子

,卡在肝脏

中,实际上,它们中很少有人
最终到达肿瘤。

因此,未来
改进纳米粒子的策略

是暂时解除
肝脏中的免疫细胞的武装。

那么我们如何解除这些细胞的武装呢?

好吧,我们研究了
已经在临床上批准

用于其他适应症

的药物,看看它们中的任何一种
是否可以阻止免疫

细胞吃掉纳米颗粒。

出乎意料的是,
在我们的一项临床前研究中,

我们发现一种具有 70 年历史的疟疾

药物能够阻止免疫细胞
将纳米颗粒内化,

从而使它们能够逃离肝脏

并继续
前往其目标——肿瘤。

在这里我们看到
了阻塞肝脏的插图。

纳米粒子不会去那里

,而是最终进入肿瘤。

因此,
有时,科学

中会产生意想不到的联系,从而产生新的解决方案。

另一种
防止纳米颗粒

卡在肝脏中的策略

是使用人体自身的纳米颗粒。

是的——惊喜,惊喜。

你,你,你,还有我们所有人,体内
都有很多纳米粒子

在循环。

而且因为它们是我们身体的一部分

,肝脏不太可能
将它们标记为异物。

这些生物纳米颗粒
可以在唾液

、血液、尿液
和胰液中找到。

我们可以从身体中收集它们

并将它们
用作抗癌药物的消防车。

在这种情况下,

肝脏中的免疫细胞
不太可能

吃掉生物纳米颗粒。

所以我们正在使用
基于特洛伊木马的概念

来愚弄肝脏。

在这里,我们看到

了血液中循环的生物纳米颗粒。

它们不会被肝脏识别

,最终会进入肿瘤。

未来,

我们希望利用
自然界自身的纳米粒子

进行癌症药物输送,

通过防止癌症
药物出现在错误的位置来减少副作用并挽救生命。

然而,一个主要问题是:

我们如何

不损坏它们的情况下大量分离这些生物纳米颗粒?

我的实验室已经开发出
一种有效的方法来做到这一点。

我们可以处理
来自体内的大量液体,

以生产出高浓度、
高质量

的生物纳米粒子配方。

而且这些纳米
颗粒还没有在临床上使用,

因为从实验室到药柜平均需要 12 年的时间

而这种
挑战需要

科学家和医生的团队合作,

他们将毕生致力于这场战斗。

得益于患者的启发,我们继续前进。

我相信,如果我们继续
研究这些纳米药物,

我们将能够减少
对健康器官的伤害,

提高生活质量

并拯救未来的患者。

我喜欢想象

,如果
丽贝卡可以接受这些治疗,

她的电话

可能

不是她的葬礼,

而是她的婚礼。

谢谢你。

(掌声)