How this disease changes the shape of your cells Amber M. Yates

What shape are your cells?

Squishy cylinders? Jagged zig-zags?

You probably don’t think much about
the bodies of these building blocks,

but at the microscopic level, small
changes can have huge consequences.

And while some adaptations change
these shapes for the better,

others can spark a cascade of
debilitating complications.

This is the story of sickle-cell disease.

Sickle-cell disease affects the
red blood cells,

which transport oxygen from the lungs
to all the tissues in the body.

To perform this vital task,

red blood cells are filled with hemoglobin
proteins to carry oxygen molecules.

These proteins float independently

inside the red blood cell’s pliable,
doughnut-like shape,

keeping the cells flexible enough

to accommodate even the
tiniest of blood vessels.

But in sickle cell disease,

a single genetic mutation alters
the structure of hemoglobin.

After releasing oxygen to tissues,

these mutated proteins lock
together into rigid rows.

Rods of hemoglobin cause the cell
to deform into a long, pointed sickle.

These red blood cells are
harder and stickier,

and no longer flow smoothly through
blood vessels.

Sickled cells snag and pile up–

sometimes blocking the vessel completely.

This keeps oxygen from reaching
a variety of cells,

causing the wide range of symptoms

experienced by people
with sickle-cell disease.

Starting when they’re
less than a year old,

patients suffer from repeated episodes of
stabbing pain in oxygen-starved tissues.

The location of the clogged vessel

determines the specific
symptoms experienced.

A blockage in the spleen,
part of the immune system,

puts patients at risk for
dangerous infections.

A pileup in the lungs can produce
fevers and difficulty breathing.

A clog near the eye can cause vision
problems and retinal detachment.

And if the obstructed vessels
supply the brain

the patient could even
suffer a stroke.

Worse still, sickled red blood cells
also don’t survive very long—

just 10 or 20 days, versus a
healthy cell’s 4 months.

This short lifespan

means that patients live with a constantly
depleted supply of red blood cells;

a condition called sickle-cell anemia.

Perhaps what’s most surprising
about this malignant mutation

is that it originally evolved
as a beneficial adaptation.

Researchers have been able to trace
the origins of the sickle cell mutation

to regions historically ravaged
by a tropical disease called malaria.

Spread by a parasite found
in local mosquitoes,

malaria uses red blood cells as incubators

to spread quickly and lethally
through the bloodstream.

However, the same structural changes
that turn red blood cells into roadblocks

also make them more resistant to malaria.

And if a child inherits a copy of the
mutation from only one parent,

there will be just enough abnormal
hemoglobin

to make life difficult for the
malaria parasite,

while most of their red blood cells retain
their normal shape and function.

In regions rife with this parasite,

sickle cell mutation offered a serious
evolutionary advantage.

But as the adaptation flourished,

it became clear that inheriting the
mutation from both parents

resulted in sickle-cell anemia.

Today, most people with
sickle-cell disease

can trace their ancestry to a country
where malaria is endemic.

And this mutation still plays a key role
in Africa,

where more than 90% of malaria
infections occur worldwide.

Fortunately, as this “adaptation” thrives,

our treatment for sickle cell continues
to improve.

For years, hydroxyurea was the only
medication available

to reduce the amount of sickling,

blunting symptoms and
increasing life expectancy.

Bone marrow transplantations
offer a curative measure,

but these procedures are
complicated and often inaccessible.

But promising new medications
are intervening in novel ways,

like keeping oxygen bonded to
hemoglobin to prevent sickling,

or reducing the stickiness
of sickled cells.

And the ability to edit DNA

has raised the possibility of enabling
stem cells to produce normal hemoglobin.

As these tools become available

in the areas most affected by malaria
and sickle cell disease,

we can improve the quality of life

for more patients with this
adverse adaptation.

你的细胞是什么形状的?

松软的气缸? 锯齿状的曲折?

你可能不会过多考虑
这些构建块的主体,

但在微观层面上,微小的
变化可能会产生巨大的后果。

虽然一些适应使
这些形状变得更好,但

其他一些可能会引发
一连串令人衰弱的并发症。

这是镰状细胞病的故事。

镰状细胞病影响
红细胞,红细胞

将氧气从肺部输送
到身体的所有组织。

为了执行这项重要任务,

红细胞充满了血红蛋白
来携带氧分子。

这些蛋白质独立地漂浮

在红细胞柔韧、
类似甜甜圈的形状内,

使细胞保持足够的柔韧性,

甚至可以容纳
最细小的血管。

但在镰状细胞病中,

单个基因突变会改变
血红蛋白的结构。

在向组织释放氧气后,

这些突变的蛋白质会锁定
在一起,形成刚性的行。

血红蛋白棒使
细胞变形为长而尖的镰刀。

这些红细胞
更硬、更粘

,不再顺畅地流过
血管。

镰状细胞会卡住并堆积起来——

有时会完全阻塞血管。

这会阻止氧气
到达各种细胞,

从而导致

镰状细胞病患者出现各种症状。


不到一岁开始,

患者
在缺氧组织中反复发作刺痛。

阻塞血管的位置

决定了所经历的具体
症状。

脾脏
是免疫系统的一部分,阻塞

会使患者面临
危险感染的风险。

肺部堆积会导致
发烧和呼吸困难。

眼睛附近的堵塞物会导致视力
问题和视网膜脱离。

如果阻塞的血管
为大脑供血

,患者甚至可能
中风。

更糟糕的是,镰状红细胞
也不能存活很长时间——

只有 10 或 20 天,而
健康细胞则需要 4 个月。

这种短暂的

寿命意味着患者
的红细胞供应不断减少。

一种称为镰状细胞性贫血的疾病。

也许这种恶性突变最令人惊讶的

是,它最初是
作为一种有益的适应进化而来的。

研究人员已经能够
将镰状细胞突变的起源

追溯到历史上
被称为疟疾的热带疾病蹂躏的地区。

通过
在当地蚊子中发现的寄生虫传播,

疟疾利用红细胞作为孵化器在血液中

快速而致命地传播

然而,将红细胞变成障碍的相同结构变化

也使它们对疟疾更具抵抗力。

如果一个孩子
只从一个父母那里继承了一个突变副本,

那么就会有足够的异常

血红蛋白让疟原虫生活困难

而他们的大部分红细胞仍
保持正常的形状和功能。

在这种寄生虫盛行的地区,

镰状细胞突变提供了严重的
进化优势。

但随着适应的蓬勃发展,

很明显
从父母双方继承突变

导致镰状细胞性贫血。

今天,大多数
镰状细胞病患

者的祖先都可以追溯到
疟疾流行的国家。

而且这种突变在非洲仍然发挥着关键作用

那里 90% 以上的疟疾
感染发生在全球范围内。

幸运的是,随着这种“适应”的蓬勃发展,

我们对镰状细胞的治疗也在
不断改进。

多年来,羟基脲是唯一

用于减少镰状细胞数量、

减轻症状和
延长预期寿命的药物。

骨髓移植
提供了一种治疗措施,

但这些程序很
复杂,而且通常无法使用。

但是有希望的新药物
正在以新颖的方式进行干预,

例如保持氧气与
血红蛋白结合以防止镰状细胞

或减少
镰状细胞的粘性。

并且编辑 DNA 的

能力提高了使
干细胞产生正常血红蛋白的可能性。

随着这些工具

在受疟疾
和镰状细胞病影响最严重的地区可用,

我们可以

改善更多患有这种
不利适应症的患者的生活质量。