Evolution in a Big City

So I’m here today to encourage
you to think about New York City,

and not just as one
of humanity’s greatest achievements,

but as home to native wildlife

that are subject to a grand
evolutionary experiment.

So take this forested hillside
in Northern Manhattan, for example.

This is one of the last areas
left in the city

where there’s clean spring water
seeping out of the ground.

You could drink this
out of your hands and you’d be OK.

These tiny little areas of seeping water

contain huge populations
of northern dusky salamanders.

These guys were common in the city
maybe 60 years ago,

but now they’re just stuck
on this single hillside

and a few places in Staten Island.

Not only do they suffer the indignity
of being stuck on this hillside,

but we divided the hillside in two

on two different occasions

with bridges crossing
from the Bronx into Manhattan.

But they’re still there,
on either side of the bridges,

where you see the red arrows –
about 180th Street, 167th Street.

My lab has found that if you just take
a few segments of DNA

from salamanders in those two locations,

you can tell which side
of the bridge they came from.

We built this single piece
of infrastructure

that’s changed their evolutionary history.

We can go study these guys,
we just go to the hillside

we know where they are,
we flip over rocks so we can catch them.

There are a lot of other things
in New York City, though,

that are not that easy to capture,
such as this guy, a coyote.

We caught him on an automatic camera trap
in an undisclosed location;

I’m not allowed to talk about it yet.

But they’re moving into New York City
for the first time.

They’re very flexible,
intelligent animals.

This is one of this year’s pups
checking out one of our cameras.

And my colleagues and I
are very interested in understanding

how they’re going to spread
through the area,

how they’re going to survive here
and maybe even thrive.

And they’re probably coming
to a neighborhood near you,

if they’re not already there.

Some things are too fast
to be caught by hand.

We can’t pick them up on the cameras,

so we set up traps
around New York City and the parks.

This is one of our most common activities.

Here’s some of my students
and collaborators

getting the traps out and ready.

This guy, we catch in almost
every forested area in New York City.

This is the white-footed mouse –

not the mouse you find
running around your apartment.

This is a native species,
been here long before humans.

You find them in forests and meadows.

Because they’re so common
in forested areas in the city,

we’re using them as a model
to understand how species are adapting

to urban environments.

So if you think back 400 years ago,

the five boroughs would’ve been covered
in forests and other types of vegetation.

This mouse would’ve been everywhere
[in] huge populations

that showed few genetic differences
across the landscape.

But if you look at the situation today,

they’re just stuck in these little islands
of forest scattered around the city.

Just using 18 short segments of DNA,
we can pretty much take a mouse

somebody could give us a mouse,
not tell us where it was from,

and we could determine
what park it came from.

That’s how different they’ve become.

You’ll notice in the middle
of this figure,

there are some mixed-up colors.

There are a few parks in the city
that are still connected to each other

with strips of forest,
so the mice can run back and forth

and spread their genes,
so they don’t become different.

But throughout the city, they’re mostly
becoming different in the parks.

So I’m telling you they’re different,
but what does that mean?

What’s changing about their biology?

To answer this question,

we’re sequencing thousands
of genes from our city mice

and comparing those to thousands
of genes from the country mice,

so, their ancestors
outside of New York City

in these big, more wilderness areas.

Now, genes are short segments of DNA
that code for amino acids.

And amino acids are
the building blocks of proteins.

If a single base pair changes in a gene,

you can get a different amino acid,

which will then change the shape
and structure of the protein.

If you change the structure of a protein,

you often change something
about what it does in the organism.

Now if that change leads to a longer
life or more babies for a mouse,

something evolutionary
biologists call fitness,

then that single base-pair change
will spread quickly

in an urban population.

So this crazy figure
is called a Manhattan plot,

because it kind of looks like a skyline.

Each dot represents one gene,

and the higher the dot is in the plot,

the more different it is
between city and country mice.

The ones kind of at the tips
of the skyscrapers are the most different,

especially those above the red line.

And these genes encode for things
like immune response to disease,

because there might be more disease
in very dense, urban populations;

metabolism, how the mice use energy;

and heavy-metal tolerance.

You guys can probably predict

that New York City soils
are pretty contaminated

with lead and chromium
and that sort of thing.

And now our hard work is really starting.

We’re going back into the wilds
of New York City parks,

following the lives of individual mice

and seeing exactly
what these genes are doing for them.

And I would encourage you guys
to try to look at your parks in a new way.

I’m not going to be
the next Charles Darwin,

but one of you guys might be,
so just keep your eyes open.

Thank you.

(Applause)

所以我今天在这里鼓励
你思考纽约市

,不仅仅是
作为人类最伟大的成就之一,

而是作为本土野生动物的家园,这些野生动物

正在经历一场宏大的
进化实验。

以曼哈顿北部这片森林茂密
的山坡为例。

这是

该市仅存的干净泉水
从地下渗出的区域之一。

你可以把这个
从你手中喝掉,你会没事的。

这些微小的渗水区域

包含
大量北方暗色蝾螈。 大约 60 年前,

这些人在这座城市很常见

但现在他们只被困
在这个单一的山坡上

和史泰登岛的几个地方。

他们不仅
因为被困在这个山坡上而遭受了侮辱,

而且我们在两个不同的场合将山坡一分为

,桥梁
从布朗克斯区通往曼哈顿。

但它们仍然存在,
在桥的两侧

,你可以看到红色箭头——
大约在第 180 街、第 167 街。

我的实验室发现,如果你只

从这两个地方的蝾螈身上提取几段 DNA,

你就可以分辨
出它们来自桥的哪一侧。

我们构建了这个单一
的基础设施

,改变了他们的进化历史。

我们可以去研究这些家伙,
我们只要到

知道他们在哪里的山坡上,
我们就可以翻转岩石以便抓住他们。

然而,纽约市还有很多其他的

东西并不那么容易捕捉,
比如这个家伙,一只土狼。

我们在一个秘密地点的自动相机陷阱上抓住了他

我还不允许谈论它。

但他们是第一次搬到纽约市

它们是非常灵活、
聪明的动物。

这是今年的一只小狗正在
检查我们的一台相机。

我和我的同事
们非常有兴趣

了解它们将如何在
该地区传播,

它们将如何在这里生存
甚至茁壮成长。

他们可能会
来到你附近的社区,

如果他们还没有的话。

有些东西太快
了,不能用手抓住。

我们无法在摄像机

上捕捉到它们,所以我们
在纽约市和公园周围设置了陷阱。

这是我们最常见的活动之一。

这是我的一些学生
和合作者

正在准备陷阱。

这个家伙,我们几乎
在纽约市的每个森林地区都能抓到。

这是白脚老鼠——

不是
你在公寓里跑来跑去的老鼠。

这是一个本土物种,
早在人类之前就已经在这里了。

你可以在森林和草地上找到它们。

因为它们
在城市的森林地区很常见,所以

我们将它们作为模型
来了解物种如何

适应城市环境。

因此,如果您回想 400 年前,

这五个行政区将
被森林和其他类型的植被覆盖。

这只老鼠将无处不在
[在]巨大的种群

中,这些种群在整个景观中几乎没有遗传差异

但如果你看今天的情况,

他们只是被困在这些
散布在城市周围的森林小岛上。

只需使用 18 条 DNA 短片段,
我们几乎可以拿一只老鼠,

有人可以给我们一只老鼠,
而不告诉我们它来自哪里

,我们可以确定
它来自哪个公园。

这就是他们变得多么不同。

你会注意到在
这个图的中间,

有一些混合的颜色。

城里有几个公园,
还是

用条条森林连在一起的
,老鼠可以来回奔跑

,传播基因
,不至于变得不一样。

但在整个城市,
公园里的它们大多变得不同。

所以我告诉你它们是不同的,
但这意味着什么?

他们的生物学发生了什么变化?

为了回答这个问题,

我们正在对
来自城市老鼠的数千个基因进行测序

,并将这些
基因与来自乡村老鼠的数千个基因进行比较,

因此,它们的祖先
在纽约市以外

的这些更大、更荒野的地区。

现在,基因是编码氨基酸的 DNA 的短片段

氨基酸是
蛋白质的组成部分。

如果基因中的单个碱基对发生变化,

您可以获得不同的氨基酸,

这将改变蛋白质的形状
和结构。

如果你改变一种蛋白质的结构,

你通常会改变
它在生物体中的作用。

现在,如果这种变化导致
老鼠的寿命更长或有更多的婴儿,

进化
生物学家称之为适应度,

那么这种单一的碱基对变化

在城市人口中迅速传播。

所以这个疯狂的人物
被称为曼哈顿情节,

因为它看起来有点像天际线。

每个点代表一个基因,

图中的点越高,

城市老鼠和乡村老鼠之间的差异就越大。

摩天大楼顶端的那种
是最不同的,

尤其是那些在红线以上的。

这些基因编码
诸如对疾病的免疫反应之类的东西,

因为
在非常密集的城市人口中可能会有更多的疾病;

新陈代谢,老鼠如何使用能量;

和重金属耐受性。

你们可能可以

预测纽约市的土壤

铅和铬
之类的东西污染了。

现在我们的努力工作才真正开始。

我们将回到
纽约市公园的荒野,

追踪每只老鼠的生活,

并确切
了解这些基因为它们做了什么。

我会鼓励你们
尝试以一种新的方式看待你们的公园。

我不会
成为下一个查尔斯·达尔文,

但你们中的一个可能会,
所以请睁大眼睛。

谢谢你。

(掌声)