How carbon capture networks could help curb climate change Bas Sudmeijer

Transcriber: Leslie Gauthier
Reviewer: Camille Martínez

If you’re in charge of a major
metropolitan city,

it’s almost a must these days
to be sustainable.

Us city dwellers pride ourselves

on living in places that are
taking action on climate change

and achieving net zero.

But what if you’re Don Iveson?

You’re the mayor of oil and gas town
Edmonton, in northern Alberta, Canada.

Or across the Atlantic,

Holly Mumby-Croft,

UK member of parliament for Scunthorpe,

home to one of the last
steel plants of Britain.

Or much smaller,

you’re Dave Smiglewski.

You’re the mayor of the little city
of Granite Falls, Minnesota,

with a large-scale ethanol
production facility nearby.

All these places,

no matter how far apart
and how different in size,

have something big in common:

millions of tons
of greenhouse gas emissions

linked to significant local employment.

And we’re going to have to find a way

to maintain the critical economic
and social functions of these towns

if we’re to have any hope
of combating climate change.

Not an easy feat,

if you think that we can’t really put
a solar panel on a gas processing facility

or a steel mill.

Fortunately, these places have another
interesting thing in common,

which might offer some hope
to these local officials.

The main sources
of pollution in their areas

are in close proximity to rock formations

with the ability to trap carbon dioxide,

the greenhouse gas we often call CO2.

And this puts into reach a potential
solution to both their problems:

pollution and employment.

It’s called “carbon capture and storage.”

It’s the process whereby
we capture the CO2,

which results from burning fossil fuels,

before it’s emitted into the atmosphere

and instead bury it underground.

Effectively, we take part of what
we’ve extracted from the earth –

the carbon –

back to where it came from.

Now, this is not a new idea.

People have been experimenting
with this technology for decades.

Today, however, there are very few
operational carbon capture facilities

in the world,

capturing about 14 million
tons of CO2 equivalent per year.

And while that may sound
like a big number,

it’s less than .1 percent of global
greenhouse gas emissions.

The International Energy Agency predicts

that we need to capture
between four and seven gigatons –

that’s four to seven
billion metric tons –

of CO2 per year by 2040

to stay at or below
two degrees Celsius warming.

And that’s a more than
100 to 200 times increase

in today’s carbon capture capacity.

To get us there will definitely require
a price on greenhouse gas pollution.

There is a cost,
and it needs to be settled.

And if we’re not smart about it,

the price could be very high.

Should we then solely rely
on the future improvements

in the fundamental technology?

No.

There is another way.

And it’s the need for
well-thought-through rollouts

of what might be called CO2 networks.

In BCG, I lead a team of consultants,

analysts and data scientists

whose focus is on advancing
carbon capture utilization and storage.

By our estimates,

if we want to hit the IEA forecast,

we need at least 110 billion dollars
per year for the next 20 years

to build out the required carbon capture
and storage infrastructure.

And there’s only one way to bring down
this essential but hefty price tag,

which is to share
the cost through networks.

Consider it the waste
disposal service for CO2.

Our research suggests that policymakers
and companies can learn a lot

by looking at a map –

lots of maps, actually,

both the ones that you and I look at
on our smartphones

as well as the less common ones

that show what lies below the surface
in terms of depleted oil and gas fields

and saline aquifers with the ability
to trap CO2 underground.

And by looking at these maps,

we can look for the optimal distances
between both the sources of emissions,

like Scunthorpe’s steel plant,

and the sinks, like the saline
aquifers of Alberta.

We had a first go,

and it yields interesting results.

By building up a detailed
database of emitters

as well as potential sinks,

we found up to 200 clusters

that have the ability to be scaled up
to low-cost carbon networks.

And they can capture more
than one gigaton of emissions,

a big step to the four to seven
gigatons that we need.

And when we dig a little deeper,

we find that optimization of distances
between sinks and sources matters.

It matters a lot in terms of the cost.

Network effects,

which is the mechanism whereby
the benefits of a system to a user

increases with the amount
of others' use of it,

can reduce the capture and storage cost
of many emitters by up a third,

to below 100 dollars
per ton of CO2 captured,

based on current costs of technology.

And while that is still
a substantial cost,

it starts to get in the range
of carbon taxes and market mechanisms

that governments of Western economies
are starting to think about

or have already put in place.

And we would not be able to achieve it

without collaboration
and sharing of infrastructure

between neighboring emitters.

Let us walk through
some of the cities I mentioned.

In assessing areas to build CO2 networks,

we look for three different things.

Firstly, proximity to storage.

Secondly, a cluster
of at least a few sources

with high amounts
of CO2 in their flue gas;

the more CO2 in the exhaust,

the cheaper it is to capture.

And thirdly, an ability to scale up
the network and lower the cost quickly

with few emitters.

Edmonton and its surrounding areas
provide a good example

of this idea at work.

Suitable underground rock layers
that can trap CO2 are abundant,

well exceeding what is needed,

and it also meets
the second and third criteria

in that it has a good combination

of both high- and low-
concentration CO2 streams

associated with different
industrial processes.

And it can scale up to low cost quickly.

In one of the clusters,

we find the number of emitters
with very low capture and storage cost

in the range of 40 to 50 dollars per ton,

but they only represent
1.2 megatons per year.

The total cluster, however,
can scale up to 12 megatons –

up to 10 times its original size.

But those first megatons of emissions
played a crucial role

in scaling up the network

and reducing the cost and risk
for others down the line.

That’s your network effect in action.

And it’s not just Edmonton.

If we take Scunthorpe
in Lincolnshire in the UK,

we see similar dynamics and potential.

The North Sea offers sufficient storage,

and while storing CO2 offshore
is more expensive than onshore,

there’s the potential to reduce this cost

by reusing and repurposing
existing oil and gas infrastructure.

If the steel mill standalone
would have to capture and store its CO2,

it would prove very costly.

But it can reduce this cost
by sharing the infrastructure

with refining and chemical emitters
en route to the North Sea.

Many of them have cheaper capture cost

with the ability to improve
the overall economics

and kick-start a network that has
the ability to scale up to 28 megatons.

Two examples in two different countries
with 14 megatons of potential –

already double versus what we have today.

And this network effect applies anywhere

and is actually not uncommon

when it comes to building out
infrastructure.

In fact, CO2 networks could very much
follow the principles of the past

in terms of how our energy and utility
infrastructure was developed around us,

whether it’s water, gas, electricity,
local supply chains –

all these networks apply
local economies of scale

and were built up over time
with favorable, marginal cost

of adding new connections.

The big difference here
is we’re reversing the flow.

And these networks have the potential
to enable future innovation

of using CO2 in chemical processes
to make, for example, building materials

instead of burying the CO2 underground.

Our analysis is a pure economic one.

It does not account for political
and local geographical barriers,

but creating a favorable
regulatory environment

and removing these barriers
will be critical.

Take these two neighboring
states in the US, for example:

North Dakota,

with ample, cheap storage
and existing CO2 pipelines,

and the state has put in place
tax incentives

and financial assistance to use it.

Go next door to Minnesota:

no storage within several hundred miles,

but home to 18 large-scale
ethanol production facilities,

including the one in Granite Falls,

all of which create a highly concentrated
stream of CO2 emissions.

Can the blue and the red state
work together to add 40 megatons

to our carbon capture tally?

We have no more than 20 years
to bend the curve

and combat climate change –

potentially less.

The gas networks in my two home countries
of the Netherlands and the UK

were built in similar time frames
after the Second World War –

massive undertakings
in infrastructure buildup

and at a time of similar
high national debt.

It’s time to build another network,

one for CO2.

It does not need to last forever.

It can be there just for the transition
away from fossil fuels.

But we need it now to preserve
local manufacturing jobs

and our communities

and provide a hope for a better
and more sustainable future.

It is critical that governments,

both local and national,

as well as companies,

assess the potential
for carbon capture at a local level,

start to capture the cheapest
sources of CO2

and build up the network from there.

Only in that way can local communities

like the ones in Edmonton,
Granite Falls, Scunthorpe and beyond

thrive both economically and sustainably.

Thank you.

抄写员:Leslie Gauthier
审稿人:Camille Martínez

如果您负责管理一个主要的
大都市,

那么如今几乎必须
要实现可持续发展。

我们城市居民

为生活在
对气候变化采取行动

并实现净零排放的地方而自豪。

但如果你是 Don Iveson 怎么办?

你是加拿大艾伯塔省北部石油和天然气小镇
埃德蒙顿的市长。

或者横跨大西洋,是

英国最后一家钢铁厂之一的斯肯索普 (Scunthorpe) 议会议员 Holly Mumby-Croft

或者更小,

你是 Dave Smiglewski。

你是
明尼苏达州格拉尼特福尔斯小城的市长,附近

有一个大型乙醇
生产设施。

所有这些地方,

无论相距多远
,大小有多大差异,

都有一个很大的共同点:

数百万吨
的温室气体排放

与当地大量就业有关。

如果我们想要应对气候变化,我们就必须找到一种方法

来维持这些城镇的关键经济
和社会功能

如果您认为我们不能真正
将太阳能电池板放在天然气加工设施

或钢厂上,这可不是一件容易的事。

幸运的是,这些地方还有一个
有趣的共同点,

这可能会给
这些地方官员带来一些希望。

他们所在

地区的主要污染源靠近岩层

,能够捕获二氧化碳,

我们通常称之为二氧化碳的温室气体。

这为他们的两个问题提供了一个潜在的
解决方案:

污染和就业。

它被称为“碳捕获和储存”。

这是
我们捕获

燃烧化石燃料产生的二氧化碳的过程,

然后将其排放到大气中,

然后将其埋在地下。

实际上,
我们将从地球上提取的一部分

——碳——

带回它的来源。

现在,这不是一个新想法。

几十年来,人们一直在试验这项技术。

然而,如今,世界上很少有可
运行的碳捕集

设施,每年

捕集约 1400
万吨二氧化碳当量。

虽然这听起来可能
是一个很大的数字,

但它还不到全球
温室气体排放量的 0.1%。

国际能源署预测

,到 2040 年,我们每年需要
捕获 4 到 7 千兆吨(

即 4 到 70
亿公吨)

的二氧化碳,

以保持或低于
2 摄氏度的升温。

这是当今碳捕获
能力的 100 到 200 倍以上

为了让我们到达那里,肯定需要
为温室气体污染付出代价。

有成本
,需要解决。

如果我们对此不聪明

,价格可能会非常高。

那么我们是否应该仅仅依靠
基础技术的未来

改进呢?

不,

还有另一种方法。

并且需要
经过深思熟虑的

推出所谓的二氧化碳网络。

在 BCG,我领导着一个由顾问、

分析师和数据科学家组成

的团队,他们专注于推进
碳捕获利用和储存。

根据我们的估计,

如果我们想达到 IEA 的预测,在接下来的 20 年中,

我们每年至少需要 1100 亿美元

来建设所需的碳捕获
和储存基础设施。

只有一种方法可以降低
这个重要但高昂的价格标签,

那就是
通过网络分担成本。

将其
视为二氧化碳的废物处理服务。

我们的研究表明,政策制定者
和公司可以

通过查看地图学到很多东西——

实际上是很多地图

,既有你我
在智能手机上看到的地图,

也有显示表面之下的不太常见的地图

就枯竭的油气田

和咸水层而言,具有
将二氧化碳捕获地下的能力。

通过查看这些地图,

我们可以寻找
排放源(

如斯肯索普的钢铁厂)

和汇(如
阿尔伯塔省的含盐含水层)之间的最佳距离。

我们进行了第一次尝试

,它产生了有趣的结果。

通过建立
排放源

和潜在汇的详细数据库,

我们发现了多达 200 个

能够扩展
到低成本碳网络的集群。

它们可以捕获
超过 1 亿吨的排放量,

这是我们需要的 4 到 7
亿吨的一大步。

当我们深入挖掘时,

我们发现优化
汇和源之间的距离很重要。

就成本而言,这很重要。

网络

效应是一种机制,
系统对用户的好处随着

其他人的使用量而增加,

可以将许多排放者的捕获和储存成本降低
三分之一

,低于
每吨二氧化碳 100 美元 捕获,

基于当前的技术成本。

虽然这仍然
是一笔巨大的成本,

但它开始进入

西方经济体政府
开始考虑

或已经实施的碳税和市场机制的范围内。

如果没有相邻排放者之间的协作和基础设施共享,我们将无法实现这一目标

让我们走过
我提到的一些城市。

在评估建设二氧化碳网络的区域时,

我们会寻找三个不同的东西。

首先,靠近存储。

其次,

烟气中含有大量二氧化碳的至少几个来源的集群;

废气中的二氧化碳越多

,捕获的成本就越低。

第三,能够以很少的发射器
快速扩大网络并降低成本

埃德蒙顿及其周边地区
为这种想法的工作提供了一个很好的例子

可以捕获 CO2 的合适地下岩层非常丰富,

远远超出了所需,

并且它还
满足第二和第三个标准

,因为它具有与不同工业过程相关

的高浓度和低
浓度 CO2 流的良好组合

它可以快速扩展到低成本。

在其中一个集群中,

我们发现
捕获和存储成本非常低的排放器数量

在每吨 40 到 50 美元之间,

但它们每年仅代表
1.2 兆吨。

然而,整个集群
可以扩展至 12 兆吨 -

高达其原始大小的 10 倍。

但最初的百万吨排放量

在扩大网络规模

和降低其他人的成本和风险
方面发挥了至关重要的作用。

这就是你的网络效应。

不仅仅是埃德蒙顿。

如果我们
以英国林肯郡的斯肯索普为例,

我们会看到类似的动态和潜力。

北海提供了充足的储存空间

,虽然在海上储存二氧化碳
比在陆地上更昂贵,

通过重新利用和重新利用
现有的石油和天然气基础设施,有可能降低这一成本。

如果独立的钢厂
必须捕获和储存二氧化碳,

成本将非常高。

但它可以
通过

与前往北海的炼油和化学排放者共享基础设施来降低成本

他们中的许多人具有更便宜的捕获成本

,能够
提高整体经济性

并启动一个
能够扩展到 28 兆吨的网络。

两个不同国家的两个例子
具有 14 兆吨的潜力——

已经是我们今天的两倍。

这种网络效应适用于任何地方

在构建
基础设施时实际上并不少见。

事实上,二氧化碳网络

在我们周围的能源和公用事业
基础设施如何开发方面可以非常遵循过去的原则,

无论是水、天然气、电力、
当地供应链——

所有这些网络都适用于
当地的规模经济

和 随着时间的推移,
以有利的边际

成本增加新连接。

这里最大的不同
是我们正在逆转流程。

这些网络有
可能实现未来

在化学过程中使用二氧化碳
进行创新,例如制造建筑材料,

而不是将二氧化碳埋在地下。

我们的分析是纯粹的经济分析。

它没有考虑政治
和地方地理障碍,

但创造有利的
监管环境

并消除这些
障碍至关重要。

以美国的这两个相邻
州为例:

北达科他州,

拥有充足、廉价的储存
和现有的二氧化碳管道,

并且该州已经实施了
税收优惠

和财政援助来使用它。

去隔壁的明尼苏达州:

几百英里内没有储存库,

但有 18 个大型
乙醇生产设施,

包括位于花岗岩瀑布的一个,

所有这些设施都会产生高度集中
的二氧化碳排放流。

蓝色和红色状态能否
共同

为我们的碳捕获总量增加 40 兆吨?

我们有不超过 20 年的时间
来扭转曲线

和应对气候变化——

可能更短。

我的两个
祖国荷兰和英国的天然气网络是在二战后

相似的时间框架内建成的
——

基础设施建设方面的大规模工程

以及类似的
高额国家债务。

是时候建立另一个网络,

一个用于二氧化碳的网络。

它不需要永远持续下去。

它可能只是为了
摆脱化石燃料的转变。

但我们现在需要它来保护
当地的制造业工作

和我们的社区,

并为更美好
、更可持续的未来提供希望。

至关重要的是

,地方和国家政府

以及公司

在地方一级评估碳捕获的潜力,

开始捕获最便宜
的二氧化碳来源

并从那里建立网络。

只有这样,

像埃德蒙顿、
花岗岩瀑布、斯肯索普和其他地方这样的当地社区才能在

经济和可持续发展方面蓬勃发展。

谢谢你。