Rebalancing our climate the future starts today

[Music]

earth’s climate is out of balance

we have heard this many times from

climate researchers

including myself but we rarely hear what

can be done about it

in this talk i summarize our options

based on

my book the future climate starts today

which will be released

in oxford university press in 2021

we are talking here about the balance

between incoming shortwave radiation

which we all know as sunlight and

outgoing long-wave radiation or heat

we understand very well that we are in

this situation

because of the human caused increase in

the planet’s natural greenhouse effect

mainly but not only because of carbon

dioxide or co2

emissions from fossil fuel burning now

how do we know this

well there are three independent lines

of argument

first fossil fuel carbon is millions of

years old

and as a result its radioactive carbon

component

has completely decayed away because this

takes only about 50 000 years

so when we radiocarbon date three rings

from the industrial revolution to the

present we find

ages that appear too old and this is

because of vast amounts of carbon

old dead fossil fuel carbon that have

been added to the atmosphere

second fossil fuel has a characteristic

very negative

stable carbon isotope ratio when we

measure changes

in this ratio since the industrial

revolution we find

a distinct trend to more negative values

which are caused by the fossil fuel

carbon addition

and third fossil fuels are an economic

resource

they get sold and account books are kept

of the quantities that are sold

and this way we know for sure that we

have burned double the amount of carbon

that we find in the atmosphere today one

half of the total has caused atmospheric

co2 rise

and the other half has been absorbed in

the ocean and in vegetation

now co2 and other greenhouse gases

reduce the amount of outgoing heat

meanwhile incoming solar radiation is

relatively constant

and as a result we are causing a shift

in the climate

think of it as a bathtub in which

the filling tap stays the same but the

outflow gets partially blocked

because the balance between inflow and

outflow is disturbed

the water level in the bath rises now in

a similar way

constant incoming radiation and partial

blocking of outgoing radiation

causes an increase in the global average

temperature

now we get to the big question what can

we do to repair this imbalance in the

climate

well global climate change proves that

we do

have the power to change the earth

system this beyond question we’ve done

it

so what we now need to do is to take

responsibility

use that power and restore the climate

first we could try to make the planet

more reflective

to sunlight there are some suggestions

on how to do this

and these fall often under the name of

geoengineering

there are many open questions about this

and especially about the safety of this

approach

so i will not further delve into this

topic

second we can reduce greenhouse gas

levels

there is a lot of activity around

emissions reduction already

including a move to electric cars to

more eco-friendly houses

a development of renewable energy

sources and so on

but at best this might bring about

emissions to zero but nations

are aiming at net zero emissions at some

point in the future

will that be enough well unfortunately

the answer there has to be no

we’ve already emitted too much co2 and

other greenhouse gases

and they have already caused more than

1.1 degrees c

of global average warming and what’s

worse

some of the components of our climate

system take many centuries to

fully respond and key examples of this

for example

are ocean warming and continental ice

sheet melting

so these systems are not yet fully

adjusted to our emissions up to now

and once they play out fully warming

will reach one and a half to two and a

half degrees c

clearly we are already at or above the

warming limits of the paris climate

agreement

if we consider things from a long long

term perspective that is

and this is a very important message in

this

it is that even if we completely stop

the missions from today

this delayed warming would still

continue while the slow systems are

catching up with what has been omitted

already until today and because we won’t

stop

emissions from today it will only get

worse

most nations are talking of reaching net

zero emissions as late as

2030 or 20 20 50.

so in short there is no doubt

we must stop emissions as soon as

possible and we must find

ways to actively remove greenhouse gases

from the climate system

most importantly the main one co2

co2 removal is possible on small scales

we do it already in space capsules and

space stations and in submarines

remember that improvised co2 scrubber in

the film

apollo 13 well that’s exactly what we’re

talking about but then on

truly massive scales we need to remove

between 70 and 280 billion tons of

carbon by 2100

you need to multiply that by about four

to get the mass of co2

this means almost 10 to 35 billion tons

of carbon removal per year

and for scale our emissions are about 10

billion tons of carbon per year

i’m not gonna lie to you it’s a gigantic

task

to have a chance of success we must

activate

every single reasonable process that can

contribute

and we must do so while making dramatic

emissions reductions at the same time

otherwise we’d have to remove even more

carbon

this is arguably humanity’s greatest

challenge yet

but humanity has excelled before at

facing massive challenges

it will be costly but the costs of

climate change

impacts if we do nothing are actually

projected to be higher

so what are our options there are three

main streams of possibilities

first we have the earth system-based

methods on land

earth system methods employ processes

of carbon removal that exist already in

natural form

and then artificially speed them up

here we find such approaches

as the more familiar ones massive tree

planting or reforestation

restoring carbon levels in degraded

soils all around the world

burial of charcoal-like products called

biochar

artificially accelerated weathering of

rocks which consume co2

or they use of captured carbon to make

long-lasting products such as building

materials

second there are marine earth

system methods so and and among these

are a bit more unfamiliar but we have

artificial fertilization of ocean areas

to trigger algal blooms

which then sink into the deep sea when

they die and

there at least theoretically the carbon

is locked away for thousands of years

then there’s restoration and enrichment

of coastal ecosystems which can hold

vast quantities of carbon

and we could add lime to the oceans or

other

so-called alkaline products to combat

ocean acidification

and this might be done together with

seawater electrolysis

to drive a hydrogen fuel-based economy

third

then we have the land-based technologies

to remove carbon from the atmosphere

here examples include biofuel based

energy generation with co2 capture at

the smokestack

and subsequent burial of that co2 or

direct capture of co2 from the open air

linked with burial of that co2 there are

also marine

technological approaches being

investigated but it’s still too early to

get into those they’re very immature

still

if you add the potential of all these

methods together then it reaches between

4

and 40 billion tons of potential carbon

removal per year

and as we saw before the target is 10 to

35 billion tons of carbon removal per

year

so we might just about be able to meet

the challenge

but only if we put our shoulders under

it

critically it will only be enough if we

massively reduce

emissions at the same time to press that

point a little

we can only succeed if we follow a

combined approach of drastic emission

reductions

and rapid development of all reasonable

carbon drawdown methods

and we need to keep an open mind

and we need to be ready to optimize and

include any new ideas that may come

along

and finally i emphasize that many of the

carbon drawdown methods

are particularly interesting because

they have good potential to pay for

themselves

and this is because there are there are

additional benefits and

for example these include improvements

in soil quality

and therefore food production and

associated food security

or improvements in coastal ecosystems

which benefit

with benefits for fisheries and for

protection against coastal erosion and

flooding

or availability of next generation

building materials

or even driving a more sustainable

circular economy that’s based on

recycling

so to conclude it is still possible to

avert the worst of climate change not

everything but the worst of it and the

time to act if we want to accomplish it

is now you know that future that people

always talk about

about when they’re discussing climate

action well that future starts today

right here right now otherwise we are

too late

together we can still make it happen

thank you

[音乐]

地球气候失衡

我们从包括我自己在内的气候研究人员那里听到了很多次,

但我们很少听到

在这次谈话中可以做些什么我

根据

我的书总结我们的选择未来气候从今天开始

在 2021 年的牛津大学出版社中,

我们在这里谈论的

是入射短波

辐射(我们都知道是太阳光)与

出射长波辐射或热量之间的平衡,

我们非常清楚,我们处于

这种情况

是因为人类

导致地球上的 自然温室效应

主要但不仅是因为化石燃料燃烧产生的

二氧化碳或

二氧化碳现在

我们怎么知道这

一点有三个独立

的论点

首先化石燃料碳已有数百

万年的历史

,因此其放射性碳

成分

具有 完全腐烂了,因为

这只需要大约 50 000 年,

所以当我们用放射性碳

测定印度的三个环时

直到现在,我们发现

年龄似乎太老了,这是

因为大量的

碳陈旧的死化石燃料

添加到大气中的

第二化石燃料具有特征性

非常负的

稳定碳同位素比,当我们

测量变化

时 自工业革命以来,

我们发现

了一个明显的趋势,

即由于化石燃料的

碳添加

和第三种化石燃料是一种经济

资源,

它们被出售并且账簿记录

了所售出的数量

,因此我们发现了一个明显的趋势,即更多的负值。 确信我们

已经燃烧了两倍于

我们今天在大气中发现的碳量,其中

一半导致大气中的

二氧化碳上升

,另一半被

海洋和植被吸收,

现在二氧化碳和其他温室气体

减少了 传出的热量

同时传入的太阳辐射

相对恒定

,因此我们正在引起

气候的变化

你可以把它想象成一个浴缸,其中

的水龙头保持不变,但

流出部分被阻塞,

因为流入和流出之间的平衡

被扰乱

了浴缸中的水位现在

以类似的方式上升,

持续的输入辐射和

部分流出的阻塞 辐射

导致全球平均

温度升高

现在我们遇到了一个大问题,我们可以

做些什么来修复这种气候不平衡

全球气候变化证明

我们确实

有能力改变地球

系统 这毫无疑问我们已经做到了

因此,我们现在需要做的是承担

责任,首先

使用这种力量并恢复

气候 有很多关于这个的悬而未决的问题

,特别是关于这种方法的安全性,

所以我不会进一步深入研究这个

话题

第二我们可以减少 g reenhouse gas

level

已经有很多关于减排的活动,

包括转向电动汽车,转向

更环保的

房屋,开发可再生

能源等等,

但充其量这可能会使

排放量为零,但各国

的目标是净排放

在未来的某个时候实现零排放

就足够了 不幸

的是,答案必须是不

我们已经排放了太多的二氧化碳和

其他温室气体

,它们已经导致

全球平均变暖超过 1.1 摄氏度,

更糟糕的是

我们气候系统的一些组成部分

需要几个世纪才能

完全响应,这方面的关键例子

是海洋变暖和大陆

冰盖融化,

因此这些系统到目前为止还没有完全

适应我们的排放量

,一旦它们完全变暖

将达到 1.5 到

2.5 摄氏度

显然我们已经达到或高于

巴黎气候协议的升温极限

如果我们从

长远的角度考虑事情

,这是一个非常重要的信息

,即使我们

从今天开始完全停止任务,

这种延迟的变暖仍将

继续,而缓慢的系统正在

赶上已经发生的事情

直到今天都已经省略了,因为我们不会

从今天开始停止排放,它只会变得

更糟,

大多数国家都在谈论要在

2030 年或 20 20 50 之前实现净零排放。

所以简而言之,毫无疑问,

我们必须尽快停止排放

尽可能,我们必须想

办法积极地

从气候系统中去除温室气体,

最重要的是,主要的一个

二氧化碳去除二氧化碳是可能的,

我们已经在太空舱、

空间站和潜艇中做到了,

记住电影中的临时二氧化碳洗涤器

阿波罗 13 号井正是我们

所说的,但是

到 2100 年,我们需要真正大规模地

去除 70 到 2800 亿吨

需要将其乘以大约四

才能获得二氧化碳的质量,

这意味着每年几乎可以去除 10 到 350

亿吨碳,

而就规模而言,我们的排放量约

为每年 100 亿吨碳,

我不会对你撒谎,这是一个

要获得成功的机会是艰巨的任务,我们必须

激活

每一个可以

做出贡献的合理过程

,我们必须这样做,同时大幅

减少排放,

否则我们将不得不去除更多的

碳,

这可以说是人类迄今为止最大的

挑战,

但是 人类在面对巨大挑战方面表现出色,

这将是昂贵的,但

如果我们什么都不做,气候变化影响的成本实际上

预计会更高,

所以我们的选择是什么?有三种

主要的可能性流

首先我们有基于地球系统的

方法 陆地

地球系统方法采用

已经以自然形式存在的碳去除过程

,然后人为地加速它们在

这里我们发现了这样的方法

就像更常见的情况一样,大规模

植树或重新造林,

恢复

世界各地退化土壤中的碳含量

埋葬称为生物炭的木炭类产品

人工加速消耗二氧化碳的岩石风化,

或者它们使用捕获的碳来制造

持久耐用的产品,例如 建筑材料

其次是海洋地球

系统方法,所以和其中

一些比较陌生,但我们

对海洋区域进行人工施肥

以引发藻类大量繁殖

,然后当

它们死亡

时沉入深海,至少理论上碳

被锁定 几千年后

,沿海生态系统会恢复和丰富,可以容纳

大量的碳

,我们可以在海洋中添加石灰或

其他

所谓的碱性产品来对抗

海洋酸化

,这可能与海水电解一起完成,

以驱动 以氢燃料为基础的经济

第三

然后我们有陆上的TE

从大气中去除碳的技术在

这里的例子包括基于生物燃料的

能源生产,在烟囱中捕获二氧化碳

并随后掩埋该二氧化碳或

直接从露天捕获二氧化碳

并与该二氧化碳掩埋有关。还有

正在研究的海洋技术方法,

如果你把所有这些方法的潜力加

在一起,那么现在进入它们还为时过早,那么它

每年的潜在碳去除量在 4 到 400 亿吨之间

,正如我们之前看到的那样,目标是 10 到

35 每年 10 亿吨的碳去除量

因此我们可能几乎能够

应对挑战,

但只有当我们认真

对待它时,只有在我们

大规模减少

排放量的同时,我们才能稍微强调

这一点

就足够了 只有

采取大幅度减排

和快速发展所有合理

碳减排方法相结合的方法

,我们才能取得成功。 需要保持开放的心态

,我们需要准备好优化并

包含可能出现的任何新想法

,最后我强调许多

碳减排

方法特别有趣,因为

它们具有很好的自我支付潜力

,这是因为 还有

其他好处,

例如,这些包括

改善土壤质量

,从而改善粮食生产和

相关的粮食安全,

或改善沿海生态系统

,从而

有利于渔业和

防止海岸侵蚀和

洪水

或下一代

建筑材料的可用性

或 即使推动基于回收的更可持续

的循环经济,

因此得出结论,仍然有可能

避免最糟糕的气候变化,而不是

一切,而是最糟糕的情况,

如果我们想要实现它

,现在是时候采取行动了,你知道未来 人们

总是在

谈论他们讨论气候

行动的时候 未来从今天开始,

现在就在这里,否则我们在一起

为时已晚

,我们仍然可以实现它,

谢谢