Steven Allison Earths original inhabitants and their role in combating climate change TED

Transcriber:

Microbes are everywhere.

They live in the air, the ocean,

the soil and on our bodies, lots of them.

But before you reach
for the hand sanitizer,

take a look at these beautiful
bacterial mats

in Yellowstone’s Grand Prismatic Spring.

They’re absolutely amazing

because they’ve somehow figured out
how to grow happily

at near boiling temperatures.

Ever since life on Earth began,
probably in a place like this,

microbes have kept planetary
chemical cycles in balance.

Today, humans are altering
that balance and changing the climate

by emitting greenhouse gases
into the atmosphere.

But microbes might be able
to help us with our climate problem.

After all, microbes are Earth’s original
and most adaptable inhabitants.

Now, I know that not everyone
is so enamored with microbes.

My biology students tell me
that they usually think of “pathogen”

when they hear the word “microbe”

and I know we’re in the middle
of a global viral pandemic.

But you should keep in mind that far less
than one percent of microbial diversity

is actually pathogenic to humans.

In fact, most of the microbes
we encounter are beneficial.

There are trillions
of bacteria, fungi and viruses

living in and on us right now,

more of them than human cells in the body.

They help us digest our food,
protect us from disease

and maybe even choose our mates.

Microbiologists call this assemblage
of tiny interlopers the human microbiome.

We now know that there are microbiomes
in basically every environment.

In the same way that they help
our human bodies stay healthy,

microbiomes in water, soil and air
are critical for planetary health.

For example, cyanobacteria in the ocean
carry out photosynthesis

and provide a large fraction
of the planet’s breathable oxygen.

Even though they’re tiny,

their green color can be seen
from outer space with satellites.

They may be harder to see,

but microbiomes in the soil
are just as important

as the human or ocean microbiome.

I think about soil
as a skin for the planet

that provides nutrients
to sustain crops and other plants.

As an ecologist and climate scientist,

I’ve been studying the microbes
that live in soil for 20 years now.

Just like we’ve seen
with the human microbiome,

cutting-edge techniques
in molecular biology,

especially DNA sequencing,

show that soil microbiomes
are extremely diverse

in their genes and life cycles.

Scientists are starting
to figure out how we can harness

the diversity of these
often invisible organisms

to solve global problems
like climate change and food insecurity.

Take agricultural crops, for example.

With climate change causing
more frequent heat waves and droughts,

crop plants may become stressed,

reducing yields
and threatening food security.

But microbes can help.

There are symbiotic fungi
called mycorrhiza

that grow out from plant roots
and into the soil

where they collect water and nutrients.

Then the plant and its
symbiotic fungus make a trade.

The fungus sends water and nutrients
into the plant roots

and the plant pays back the fungus
with sugars from photosynthesis.

To reduce stress on plants
from climate change,

farmers can inoculate the soil
with these beneficial fungi.

Land managers are also starting
to use the same approach

to help native plants
recolonize degraded soil

during habitat restoration.

So the next time you support
an environmental cause,

maybe through a nonprofit donation
or volunteer work,

remember, soil microbes
need conservation too.

The planet also relies on soil microbiomes
for other essential services.

Have you ever thought
about what happens to living things

like these leaves, mosses
and mushrooms when they die?

I’m not talking
about an existential crisis.

I’m talking about microbial decomposition.

Think about it like a type
of biological recycling

practiced by very diligent microbes.

They take dead bodies
and turn them into useful nutrients.

Without this essential service,

life on Earth would grind to a halt

because dead stuff would pile up,

depriving the next generation
of life forms of the raw materials

needed for growth.

Hundreds of researchers
funded by the US Department of Energy

are even trying to figure out
how to co-opt microbial decomposition

to produce sustainable biofuels

from wood, grasses
and other plant materials.

Fuels derived from plants and microbes
are part of the climate solution

because they don’t rely
on fossil carbon sources

like coal and oil.

At the same time, ecologists like me
are very concerned

about how climate change might affect
microbial recycling in the environment.

A warming climate
might speed up the process

and release more greenhouse gases
into the atmosphere.

A drier climate
might slow down the microbes

and leave plants starved
for essential nutrients.

Fortunately, there is reason for hope.

Microbes are super adaptable
because they can evolve very quickly.

For example, you may have heard
of pathogenic bacteria like staph

evolving antibiotic resistance.

Of course, that’s bad for us.

But the same evolutionary process

could also help microbes
adapt to climate change, which is good.

After all, microbes evolved long ago

to survive extreme conditions
like the hot springs of Yellowstone.

Just like our human cells,
each microbial cell contains a genome.

And just like our genomes,

microbial genomes
contain genes or DNA sequences

with instructions for growth and survival.

My colleagues and I have identified genes

that allow bacteria and fungi
to survive drought

and decompose dead plant material.

We’re currently doing experiments
to see how fast these genes evolve

and what kinds of genetic changes

make bacteria and fungi
more resistant to drought.

Some of our prior research
shows that microbes have the potential

to deal with climate change.

Microbiomes and the services they provide
could cope not just by evolving,

but also by shifting around
the dominant species of microbes.

Microbiomes are so diverse

that even if some of the species
die out with climate change,

others might survive and take their place,
allowing nature’s recycling to continue.

To test this idea, my colleagues and I
designed special cages

to contain microbiomes

from different habitats
in Southern California.

We sampled microbiomes from places

ranging from forested mountaintops

to hot deserts.

Each cage contained a microbiome
from one of these places

along with sterilized dead grass
for the microbes to use as a food source.

We then put the cages back
into the different habitats

so that the microbiomes experienced
pretty dramatic changes in climate.

We expected that the microbes
from the cooler places

would die out when we moved them
to the warm places like the hot desert,

and that they would lose their ability

to consume and recycle the nutrients
in the dead grass material.

But when we looked at the results,

I was really shocked.

The microbiomes were almost unfazed
by this massive climate difference.

There were some changes
in the dominant species,

but mountaintop microbes
decomposed dead grass just as well

as desert microbiomes
in the hot, dry climate.

This result tells us the microbiomes
have the ability to evolve

and shift to deal with really
dramatic climate changes.

Another way that soil microbiomes
can be part of the climate change solution

is by building healthy soil.

Many soil bacteria and fungi
ooze out sticky chemicals

to glue themselves onto soil surfaces.

The glue and the microbes

form these biofilms
that hold soil particles together.

This helps the soil resist erosion

and hold more water
that’s available for plants.

Microbes and their biofilms also play
a big role in soil carbon sequestration.

Many forms of carbon from plants,
like sugars, don’t last long in the soil

because they’re food for many organisms,
including the microbes.

But microbodies and biofilms
are made up of complex chemicals.

For example, many microbes
build cell walls for protection,

so the wall material has to be resistant
to biochemical attack.

When the microbes die, their corpses,
especially those cell walls,

can stick around for a really long time,
maybe even thousands of years.

In this way, soil acts a lot like
a bank vault for carbon.

More carbon in the bank
means healthier soil

and less greenhouse gas
buildup in the atmosphere.

Microbes are sort of
like the Federal Reserve.

They can take cash off the street
in the form of these plant sugars

and lock it away in a chemical vault
for long-term storage.

With the science of climate change
becoming more and more obvious every day,

we need to figure out
how to adapt, for sure.

Some scary outcomes,
like emerging microbial diseases,

are definitely something
we need to plan for.

But microbes can be a part
of the climate solution

if we figure out how to leverage
all that microbiome diversity.

To be honest, though, making sense
out of complex microbiomes

is still a big scientific challenge.

Their complexity
is both a blessing and a curse.

We’re only beginning to understand

all the strange and wonderful
microbial lifestyles

that have been evolving
since the origins of life on Earth.

This digital artwork
called “Microbes Reimagined”

does a great job of capturing
that sense of mystery.

But one thing we do know for sure
is that microbes are not just pathogens.

Our lives literally depend on them.

So next time you take a breath outside,

imagine all those
oxygen-spewing cyanobacteria

floating around in the ocean,

and when the time comes

and you draw in
that last and final breath,

take comfort in knowing
that soil microbes will be there

to turn your body into useful nutrients.

Even as we enjoy
these benefits of microbiomes,

climate change remains a potentially
existential threat to our well-being.

But dangerous climate change
is not inevitable, at least not yet.

With the right cutting-edge research,

diverse microbiomes
could become a big part of the solution

to our climate problem.

Thank you.

抄写员:

微生物无处不在。

它们生活在空气、海洋

、土壤和我们的身体上,很多。

但在你拿到洗手液之前,先

看看黄石大棱镜泉中这些美丽的
细菌垫

它们绝对令人惊叹,

因为它们以某种方式想出了
如何

在接近沸腾的温度下快乐地生长。

自从地球上的生命开始,
可能在这样的地方,

微生物就一直保持着行星
化学循环的平衡。

今天,人类正在通过向大气排放温室气体来改变
这种平衡并改变气候

但微生物或许
能够帮助我们解决气候问题。

毕竟,微生物是地球上最原始
、适应性最强的居民。

现在,我知道并不是每个人
都如此迷恋微生物。

我的生物学学生告诉我

当他们听到“微生物”这个词时,他们通常会想到“病原体”

,我知道我们正
处于全球病毒大流行之中。

但是你应该记住,远
少于百分之一的微生物

多样性实际上对人类是致病的。

事实上,
我们遇到的大多数微生物都是有益的。

现在有数以万亿计
的细菌、真菌和病毒

生活在我们体内和我们

身上,比体内的人体细胞还多。

它们帮助我们消化食物,
保护我们免受疾病侵害

,甚至可能选择我们的伴侣。 微

生物学家将这种
微小入侵者的集合称为人类微生物组。

我们现在知道,
基本上每个环境中都有微生物组。

就像它们帮助
我们的人体保持健康一样,

水、土壤和空气中的微生物组
对地球健康至关重要。

例如,海洋中的蓝藻
进行光合作用

并提供
大部分地球可呼吸氧气。

尽管它们很小,

但可以通过卫星从外太空看到它们的绿色

它们可能更难被发现,

但土壤中的

微生物组与人类或海洋微生物组一样重要。

我认为土壤
是地球的表皮

,为
作物和其他植物提供养分。

作为一名生态学家和气候科学家,

我研究
生活在土壤中的微生物已有 20 年了。

就像我们
在人类微生物组中看到的那样

,分子生物学的尖端技术,

尤其是 DNA 测序,

表明土壤微生物

组的基因和生命周期极为多样化。

科学家们
开始弄清楚我们如何

利用这些
通常看不见的生物的多样性

来解决
气候变化和粮食不安全等全球性问题。

以农作物为例。

随着气候变化导致
更频繁的热浪和干旱,

农作物可能会受到压力,

从而降低产量
并威胁粮食安全。

但微生物可以提供帮助。

有一种
叫做菌根

的共生真菌从植物根部长出
并进入土壤

,在那里它们收集水分和养分。

然后植物和它的
共生真菌进行交易。

真菌将水和养分
输送到植物根部

,植物
用光合作用产生的糖分回报真菌。

为了减少气候变化对植物的压力

农民可以
用这些有益的真菌接种土壤。

土地管理者也
开始使用相同的方法

来帮助本地植物

在栖息地恢复期间重新定居退化的土壤。

因此,下次您
支持环境事业时,

可能通过非营利捐赠
或志愿者工作,

请记住,土壤微生物也
需要保护。

地球还依赖土壤微生物群
提供其他基本服务。

你有没有想过

这些树叶、苔藓
和蘑菇等生物死后会发生什么?

我不是在
谈论生存危机。

我说的是微生物分解。

把它想象成一种

由非常勤奋的微生物进行的生物循环。

他们取走尸体
并将其转化为有用的营养物质。

如果没有这项必要的服务,

地球上的生命将会停止,

因为死去的东西会堆积起来,

剥夺
下一代生命形式

生长所需的原材料。

由美国能源部资助的数百名研究

人员甚至试图弄清楚
如何利用微生物分解

从木材、草
和其他植物材料中生产可持续的生物燃料。

源自植物和微生物的燃料
是气候解决方案的一部分,

因为它们不依赖

煤炭和石油等化石碳源。

同时,像我
这样的生态学家非常

关心气候变化如何影响
环境中的微生物循环。

气候变暖
可能会加速这一过程

并将更多的温室气体释放
到大气中。

更干燥的气候
可能会减慢微生物的生长速度

,让植物
缺乏必需的营养。

幸运的是,我们有理由抱有希望。

微生物具有超强的适应性,
因为它们可以非常迅速地进化。

例如,您可能听说过
像葡萄球菌这样的

病原菌会产生抗生素耐药性。

当然,这对我们不利。

但同样的进化过程

也可以帮助微生物
适应气候变化,这很好。

毕竟,微生物很久以前

就进化到能够
在黄石温泉等极端条件下生存。

就像我们的人类细胞一样,
每个微生物细胞都包含一个基因组。

就像我们的基因组一样,

微生物基因组
包含

带有生长和生存指令的基因或 DNA 序列。

我和我的同事已经确定

了使细菌和真菌
能够在干旱中存活

并分解死亡植物材料的基因。

我们目前正在做实验
,看看这些基因进化的速度有多快,

以及什么样的基因变化

使细菌和真菌
更能抵抗干旱。

我们之前的一些研究
表明,微生物具有

应对气候变化的潜力。

微生物组及其提供的服务
不仅可以通过进化来应对,

还可以通过
围绕主要微生物物种的转变来应对。

微生物群落如此多样化

,即使一些物种
因气候变化而灭绝,

其他物种也可能存活并取而代之,
从而使大自然的循环利用得以继续。

为了验证这个想法,我和我的同事
设计了特殊的笼子

来容纳

来自南加州不同栖息地的微生物组

我们

从森林覆盖的山顶

到炎热的沙漠等地采集了微生物组。

每个笼子都装有
来自其中一个地方的微生物组

以及经过消毒的死草
,供微生物用作食物来源。

然后我们将笼子
放回不同的栖息地

,使微生物群落经历了
相当剧烈的气候变化。

我们预计,

当我们将来自较冷地方的微生物转移
到炎热的沙漠等温暖的地方时,它们会灭绝

,它们将

失去消耗和回收
死草材料中营养物质的能力。

但是当我们看到结果时,

我真的很震惊。

微生物组几乎
不受这种巨大的气候差异的影响。

优势物种发生了一些变化,

但山顶微生物在炎热干燥的气候中
分解死草

和沙漠微生物群落

这一结果告诉我们,微生物组
有能力进化

和转变以应对真正
剧烈的气候变化。

土壤微生物组
可以成为气候变化解决方案一部分的另一种方式

是建立健康的土壤。

许多土壤细菌和真菌会
渗出粘性化学物质

,将自己粘在土壤表面。

胶水和微生物

形成
这些将土壤颗粒固定在一起的生物膜。

这有助于土壤抵抗侵蚀

并保持更多
可供植物使用的水分。

微生物及其生物膜
在土壤碳封存中也发挥着重要作用。

来自植物的许多形式的碳,
如糖,在土壤中不会持续很长时间,

因为它们是许多生物体的食物,
包括微生物。

但是微生物和生物膜
是由复杂的化学物质组成的。

例如,许多微生物会
构建细胞壁进行保护,

因此细胞壁材料必须能够
抵抗生化攻击。

当微生物死亡时,它们的尸体,
尤其是那些细胞壁,

可以在很长一段时间内,
甚至数千年。

通过这种方式,土壤的作用很像
碳的银行金库。

银行中更多的碳
意味着更健康的土壤

和更少的温室气体
在大气中的积累。

微生物有点
像美联储。

他们可以以
这些植物糖的形式从街上

拿走现金,并将其锁在化学保险库中
以长期储存。

随着气候变化科学
每天变得越来越明显,

我们
当然需要弄清楚如何适应。

一些可怕的结果,
比如新出现的微生物疾病

,绝对是
我们需要计划的事情。

但是

如果我们弄清楚如何利用
所有微生物组的多样性,微生物可以成为气候解决方案的一部分。

不过,老实说,
从复杂的微生物组

中理解仍然是一个巨大的科学挑战。

它们的复杂
性既是福也是祸。

我们才刚刚开始了解自地球生命起源以来一直在进化的

所有奇怪而奇妙的
微生物生活方式

这幅
名为“Microbes Reimagined

”的数字艺术作品很好地捕捉了
这种神秘感。

但我们确实知道的一件事
是微生物不仅仅是病原体。

我们的生活确实依赖于他们。

所以下次你在外面呼吸时,

想象一下所有那些
喷出氧气的蓝藻

漂浮在海洋中

,当时间到了

,你吸
进最后一口气,

知道土壤微生物会在

那里改变你的身体时,你会感到欣慰。 身体转化为有用的营养素。

即使我们享受
微生物组的这些好处,

气候变化仍然
对我们的福祉构成潜在的生存威胁。

但危险的气候变化
并非不可避免,至少目前还不是。

通过正确的前沿研究,

多样化的微生物组
可能成为解决我们气候问题的重要组成部分

谢谢你。