Why the Arctic is climate changes canary in the coal mine William Chapman

The area surrounding the North Pole

may seem like a frozen and desolate
environment where nothing ever changes.

But it is actually a complex
and finely balanced natural system,

and its extreme location
makes it vulnerable to feedback processes

that can magnify even tiny changes
in the atmosphere.

In fact, scientists often describe
the Arctic as the canary in the coal mine

when it comes to predicting the impact
of climate change.

One major type of climate feedback
involves reflectivity.

White surfaces, like snow and ice,

are very effective at reflecting
the sun’s energy back into space,

while darker land and water surfaces
absorb much more incoming sunlight.

When the Arctic warms just a little,
some of the snow and ice melts,

exposing the ground and ocean underneath.

The increased heat absorbed by
these surfaces causes even more melting,

and so on.

And although the current situation
in the Arctic follows the warming pattern,

the opposite is also possible.

A small drop in temperatures
would cause more freezing,

increasing the amount
of reflective snow and ice.

This would result in less sunlight
being absorbed,

and lead to a cycle of cooling,
as in previous ice ages.

Arctic sea ice is also responsible
for another feedback mechanism

through insulation.

By forming a layer on the ocean’s surface,

the ice acts as a buffer between
the frigid arctic air

and the relatively
warmer water underneath.

But when it thins, breaks,
or melts in any spot,

heat escapes from the ocean,

warming the atmosphere
and causing more ice to melt in turn.

Both of these are examples
of positive feedback loops,

not because they do something good,

but because the initial change
is amplified in the same direction.

A negative feedback loop,
on the other hand,

is when the initial change
leads to effects

that work in the opposite direction.

Melting ice also causes
a type of negative feedback

by releasing moisture into the atmosphere.

This increases the amount and thickness
of clouds present,

which can cool the atmosphere
by blocking more sunlight.

But this negative feedback loop
is short-lived,

due to the brief Arctic summers.

For the rest of the year,
when sunlight is scarce,

the increased moisture and clouds

actually warm the surface
by trapping the Earth’s heat,

turning the feedback loop positive
for all but a couple of months.

While negative feedback loops
encourage stability

by pushing a system towards equilibrium,

positive feedback loops destabilize it
by enabling larger and larger deviations.

And the recently increased impact
of positive feedbacks

may have consequences
far beyond the Arctic.

On a warming planet,

these feedbacks ensure that the North Pole
warms at a faster rate than the equator.

The reduced temperature differences
between the two regions

may lead to slower jet stream winds

and less linear atmospheric circulation
in the middle latitudes,

where most of the world’s
population lives.

Many scientists are concerned
that shifts in weather patterns

will last longer and be more extreme,

with short term fluctuations becoming
persistent cold snaps,

heat waves, droughts and floods.

So the Arctic sensitivity doesn’t just
serve as an early warning alarm

for climate change
for the rest of the planet.

Its feedback loops can affect us
in much more direct and immediate ways.

As climate scientists often warn,

what happens in the Arctic
doesn’t always stay in the Arctic.

北极周围的区域

可能看起来像一个冰冻而荒凉的
环境,什么都没有改变。

但它实际上是一个复杂
而精细平衡的自然系统

,它的极端位置
使其容易受到反馈过程的影响

,甚至可以放大
大气中的微小变化。

事实上,在预测气候变化的影响时,科学家们经常
将北极描述为煤矿中的金丝雀

一种主要类型的气候反馈
涉及反射率。

白色的表面,如雪和冰,


将太阳的能量反射回太空方面非常有效,

而较暗的陆地和水面则
吸收更多的阳光。

当北极稍微变暖时,
一些冰雪融化,

露出下面的地面和海洋。

这些表面吸收的热量增加
会导致更多的熔化,

等等。

尽管北极目前的
情况遵循变暖模式

,但也有可能出现相反的情况。

温度的小幅下降
会导致更多的冻结,

增加反射雪和冰的数量。

这将导致更少的阳光
被吸收,

并导致冷却循环,
就像以前的冰河时代一样。

北极海冰还
负责通过绝缘的另一种反馈机制

通过在海洋表面形成一层

,冰
在寒冷的北极空气

和下面相对
温暖的海水之间起到缓冲作用。

但是当它
在任何地方变薄、破裂或融化时,

热量会从海洋中逸出,

使大气变暖,
进而导致更多的冰融化。

这两个
都是正反馈循环的例子,

不是因为它们做了好事,

而是因为最初的变化
在同一个方向上被放大了。

另一方面,负反馈循环

是指最初的变化

导致了相反方向的效果。

融化的冰还会

通过将水分释放到大气中来引起一种负反馈。

这增加了存在的云的数量和厚度

,可以
通过阻挡更多的阳光来冷却大气。

但由于北极夏季短暂,这种负反馈循环
是短暂的

在一年中余下的时间里,
当阳光稀少时

,增加的水分和云

实际上会
通过捕获地球的热量来温暖地表,从而

使反馈回路
在几个月内保持正向。

负反馈循环

通过将系统推向平衡来鼓励稳定性,而

正反馈循环
通过允许越来越大的偏差来破坏系统的稳定性。

而最近
积极反馈的影响增加,

其后果可能
远远超出北极。

在一个变暖的星球上,

这些反馈确保北极
以比赤道更快的速度变暖。

两个地区之间的温差减小

可能会导致中纬度地区的急流风变慢

和线性大气环流减少

那里是世界上大多数
人口的居住地。

许多科学家
担心天气模式的变化

将持续更长时间和更极端

,短期波动会变成
持续的寒流、

热浪、干旱和洪水。

因此,北极的敏感性不仅
可以作为地球其他地区

气候变化的预警警报

它的反馈循环可以
以更直接和直接的方式影响我们。

正如气候科学家经常警告的

那样,在北极发生的事情
并不总是在北极发生。