How do we know what color dinosaurs were Len Bloch

This is the microraptor,

a carnivorous four-winged dinosaur
that was almost two-feet long,

ate fish,

and lived about 120 million years ago.

Most of what we know about it
comes from fossils that look like this.

So, is its coloration here
just an artist’s best guess?

The answer is no.

We know this shimmering
black color is accurate

because paleontologists have analyzed
clues contained within the fossil.

But making sense of the evidence
requires careful examination of the fossil

and a good understanding of the physics
of light and color.

First of all, here’s what we actually see
on the fossil:

imprints of bones and feathers that have
left telltale mineral deposits.

And from those imprints,

we can determine that these
microraptor feathers

were similar to modern dinosaur,
as in bird, feathers.

But what gives birds their signature
diverse colorations?

Most feathers contain just one
or two dye-like pigments.

The cardinal’s bright red
comes from carotenoids,

the same pigments
that make carrots orange,

while the black of its face
is from melanin,

the pigment that colors our hair and skin.

But in bird feathers,
melanin isn’t simply a dye.

It forms hollow nanostructures
called melanosomes

which can shine in all the colors
of the rainbow.

To understand how that works,

it helps to remember
some things about light.

Light is basically a tiny electromagnetic
wave traveling through space.

The top of a wave is called its crest

and the distance between two crests
is called the wavelength.

The crests in red light are about
700 billionths of a meter apart

and the wavelength of purple light
is even shorter,

about 400 billionths of a meter,
or 400 nanometers.

When light hits the thin front surface
of a bird’s hollow melanosome,

some is reflected and some passes through.

A portion of the transmitted light
then reflects off the back surface.

The two reflected waves interact.

Usually they cancel each other out,

but when the wavelength
of the reflected light

matches the distance between
the two reflections,

they reinforce each other.

Green light has a wavelength
of about 500 nanometers,

so melanosomes that are
about 500 nanometers across

give off green light,

thinner melanosomes give off purple light,

and thicker ones give off red light.

Of course, it’s more complex than this.

The melanosomes are packed together
inside cells, and other factors,

like how the melanosomes are arranged
within the feather, also matter.

Let’s return to the microraptor fossil.

When scientists examined its feather
imprints under a powerful microscope,

they found nanostructures
that look like melanosomes.

X-ray analysis of the melanosomes
further supported that theory.

They contained minerals that would
result from the decay of melanin.

The scientists then chose 20 feathers
from one fossil

and found that
the melanosomes in all 20 looked alike,

so they became pretty sure this dinosaur
was one solid color.

They compared these microraptor
melanosomes to those of modern birds

and found a close similarity,
though not a perfect match,

to the iridescent teal feathers
found on duck wings.

And by examining the exact size
and arrangement of the melanosomes,

scientists determined that the feathers
were iridescent black.

Now that we can determine
a fossilized feather’s color,

paleontologists are looking for more
fossils with well-preserved melanosomes.

They’ve found that a lot of dinosaurs,
including velociraptor,

probably had feathers,

meaning that certain films might not be
so biologically accurate.

Clever girls.

这是小盗龙,

一种肉食性的四翼恐龙
,几乎有两英尺长,

吃鱼

,生活在大约 1.2 亿年前。

我们对它的了解大部分
来自看起来像这样的化石。

那么,这里的颜色
只是艺术家的最佳猜测吗?

答案是不。

我们知道这种闪闪发光的
黑色是准确的,

因为古生物学家已经分析
了化石中包含的线索。

但要理解这些证据,
需要仔细检查化石

,并对光和颜色的物理学有很好的理解

首先,这是我们
在化石上实际看到的:留下明显矿藏

的骨头和羽毛的印记

从这些印记中,

我们可以确定这些小
盗龙的

羽毛与现代恐龙相似,
就像鸟类的羽毛一样。

但是,是什么赋予了鸟类标志性的
多样化颜色呢?

大多数羽毛只含有一种
或两种类似染料的颜料。

红衣主教的鲜红色
来自类胡萝卜素

,与
使胡萝卜呈橙色的色素相同,

而其面部的黑色
来自黑色素

,黑色素使我们的头发和皮肤着色。

但在鸟类羽毛中,
黑色素不仅仅是一种染料。

它形成
称为黑素体的中空纳米结构

,可以发出彩虹的所有
颜色。

要了解它是如何工作的,

记住
一些关于光的事情会有所帮助。

光基本上是一种
穿过空间的微小电磁波。

波的顶部称为波峰

,两个波峰之间的
距离称为波长。

红光的波峰相距大约
十亿分之一米,

而紫光的
波长更短,

大约十亿分之一米,
即 400 纳米。

当光线照射到
鸟类中空黑色素体的薄前表面时,

有些被反射,有些则穿过。

然后一部分透射光
从背面反射。

两个反射波相互作用。

通常它们会相互抵消,

但当
反射光的波长

与两次反射之间的距离匹配时

它们会相互增强。

绿光的
波长约为 500 纳米,

因此
直径约为 500 纳米的

黑素体发出绿光,较薄的黑素体发出紫光,较厚的黑素体

发出红光。

当然,它比这更复杂。

黑素体
在细胞内聚集在一起,其他因素,

如黑素体
在羽毛内的排列方式,也很重要。

让我们回到小盗龙化石。

当科学家
在强大的显微镜下检查它的羽毛印记时,

他们
发现了看起来像黑素体的纳米结构。

黑素体的 X 射线分析
进一步支持了这一理论。

它们含有
黑色素腐烂产生的矿物质。

然后,科学家们从一个化石中选择了 20 根羽毛

,发现
所有 20 根羽毛中的黑色素体看起来都很相似,

因此他们非常确定这只恐龙
是一种纯色。

他们将这些小盗龙的
黑色素体与现代鸟类的黑色素体进行了比较

,发现与鸭翅上的虹彩青色羽毛非常相似
,尽管不是完美匹配

通过检查
黑素体的确切大小和排列,

科学家们确定羽毛
是呈虹彩的黑色。

现在我们
可以确定羽毛化石的颜色,

古生物学家正在寻找更多
具有保存完好的黑素体的化石。

他们发现很多恐龙,
包括迅猛龙,

可能都有羽毛,

这意味着某些电影在
生物学上可能不那么准确。

聪明的女孩。