What is color Colm Kelleher

One of the most striking properties
about life is that it has color.

To understand the phenomenon of color,
it helps to think about light as a wave.

But, before we get to that,

let’s talk a little bit
about waves in general.

Imagine you’re sitting on a boat on the ocean
watching a cork bob up and down in the water.

The first thing you notice about
the motion is that it repeats itself.

The cork traces the same path over and
over again… up and down, up and down.

This repetitive or periodic motion
is characteristic of waves.

Then you notice something else…

using a stopwatch, you measure
the time it takes for the piece of cork

to go over its highest position down
to its lowest and then back up again.

Suppose this takes two seconds.

To use the physics jargon, you’ve measured
the period of the waves that cork is bobbing on.

That is, how long it takes a wave to go
through its full range of motion once.

The same information can be expressed
in a different way by calculating the wave’s frequency.

Frequency, as the name suggest, tells you
how frequent the waves are.

That is, how many of them
go by in one second.

If you know how many seconds
one full wave takes,

then it’s easy to work out
how many waves go by in one second.

In this case, since each wave takes 2 seconds,
the frequency is 0.5 waves per second.

So enough about bobbing corks…
What about light and color?

If light is a wave, then it must
have a frequency. Right?

Well… yes, it does.

And it turns out that we already have a name for the frequency of the light that our eyes detect.

It’s called color.

That’s right. Color is nothing more than a measure
of how quickly the light waves are waving.

If our eyes were quick enough, we might be able to observe this periodic motion directly,

like we can with the cork and the ocean.

But the frequency of the light
we see is so high,

it waves up and down about
400 million million times a second,

that we can’t possibly see it as a wave. But we can tell, by looking at its color, what its frequency is.

The lowest frequency light that we can see
is red and the highest frequency is purple.

In between all the other frequencies form a continuous band of color, called the visible spectrum.

So, what if you had a yellow pencil
sitting on your desk?

Well, the sun emits all colors of light,
so light of all colors is hitting your pencil.

The pencil looks yellow because it reflects yellow light more than it reflects the other colors.

What happens to the blue,
purple and red light?

They get absorbed and the energy
they are carrying is turned into heat.

It is similar with objects
of other colors.

Blue things reflect blue light,
red things reflect red light and so on.

White objects reflect all colors of light,

while black things do exactly the opposite
and absorb at all frequencies.

This - by the way - is why it’s uncomfortable
to wear your favorite Metallica t-shirt on a sunny day.

生命最引人注目的特性之一
是它具有颜色。

要了解颜色现象,
将光视为波会有所帮助。

但是,在我们开始之前,

让我们先
谈谈一般的波浪。

想象一下,你坐在海上的一艘船上,
看着软木塞在水中上下摆动。

你注意到这个动作的第一件事
是它会重复自己。

软木塞一遍又一遍地沿着同一条路径
……上上下下,上上下下。

这种重复或周期性的运动
是波浪的特征。

然后你会注意到别的东西……

你用秒表测量

软木塞从最高位置
到最低位置然后再次返回所需的时间。

假设这需要两秒钟。

用物理学术语来说,你已经测量
了软木塞在波浪上摆动的周期。

也就是说,波需要多长时间才能
完成一次完整的运动范围。

通过计算波的频率,可以以不同的方式表达相同的信息。

频率,顾名思义,告诉
你波的频率。

也就是说,
一秒钟有多少人过去了。

如果您知道
一个完整的波浪需要多少秒,

那么很容易计算
出一秒钟内经过了多少个波浪。

在这种情况下,由于每波需要 2 秒
,因此频率为每秒 0.5 波。

摇动软木塞就够了……
光和颜色呢?

如果光是波,那么它一定
有频率。 对?

嗯……是的,确实如此。

事实证明,我们已经为我们的眼睛检测到的光的频率命名。

它被称为颜色。

那就对了。 颜色只不过
是光波波动速度的量度。

如果我们的眼睛足够快,我们也许可以直接观察到这种周期性运动,

就像我们观察软木和海洋一样。

但是我们看到的光的频率
是如此之高,

它每秒上下波动大约
4 亿次

,我们不可能把它看作是一个波。 但是我们可以通过观察它的颜色来判断它的频率是多少。

我们能看到的最低频率的
光是红色的,最高频率的光是紫色的。

在所有其他频率之间形成一个连续的色带,称为可见光谱。

那么,如果你的办公桌上放着一支黄色铅笔
呢?

嗯,太阳发出所有颜色的光,所以所有颜色的光
都打在你的铅笔上。

铅笔看起来是黄色的,因为它反射的黄光比反射其他颜色的多。

蓝光、
紫光和红光会发生什么变化?

它们被吸收,
它们携带的能量转化为热量。

它与
其他颜色的物体相似。

蓝色的东西反射蓝光,
红色的东西反射红光等等。

白色物体反射所有颜色的光,

而黑色物体则完全相反
并吸收所有频率。

顺便说一句,这就是为什么
在阳光明媚的日子穿上你最喜欢的 Metallica T 恤会不舒服。