The most colorful gemstones on Earth Jeff Dekofsky

On an auspicious day
in November of 1986,

5 Australian miners climbed Lunatic Hill—

so named for the mental state
anyone would be in to dig there.

While their competitors searched
for opals at a depth of 2 to 5 meters,

the Lunatic Hill Syndicate bored
20 meters into the earth.

And for their audacity, the earth
rewarded them

with a fist-sized, record breaking opal.

They named it the Halley’s Comet opal,

after the much larger rocky, icy body
flying by the earth at that time.

The Halley’s Comet opal is a marvel,
but its uniqueness is, paradoxically,

the most usual thing about it.

While diamonds, rubies, emeralds,
and other precious stones

are often indistinguishably similar,

no two opals look the same,

thanks to a characteristic
called “play of color.”

This shimmering, dazzling, dancing
display of light

comes about from a confluence
of chemistry, geology, and optics

that define opals from their earliest
moments, deep underground.

It’s there that an opal begins its life
as something surprisingly abundant: water.

Trickling down through gaps
in soil and rock,

water flows through sandstone, limestone,
and basalt,

picking up a microscopic compound
called silicon dioxide.

This silica-enriched water enters
the voids inside pieces of volcanic rock,

prehistoric river beds, wood
and even the bones of ancient creatures.

Gradually, the water starts to evaporate,

and the silica-solution begins
forming a gel,

within which millions of silica spheres
form layer by layer

as a series of concentric shells.

The gel ultimately hardens
into a glass-like material,

and the spheres settle
into a lattice structure.

The vast majority of the time,
this structure is haphazard,

resulting in common, or potch, opals
with unremarkable exteriors.

The tiny, mesmerizing percentage
we call precious opals

have regions where silica beads
of uniform size form orderly arrays.

So why do those structures produce
such vibrant displays?

The answer lies in a principle of wave
physics called interference.

For the sake of simplicity,

let’s look at what happens
when a single color of light—

green, with a wavelength of 500
nanometers— hits a precious opal.

The green light will scatter throughout
the gemstone

and reflect back with varying intensities—

from most angles suffused,
from some entirely dimmed,

and others dazzlingly bright.

What’s happening is, some of the green
light reflects off of the top layer.

Some reflects off of the layer below that.

And so on.

When the additional distance it travels
from one layer to the next, and back,

is a multiple of the wavelength—
such as 500 or 1000 extra nanometers—

the crests and valleys of the waves
match each other.

This phenomenon is called
constructive interference,

and it amplifies the wave,
producing a brighter color.

So if you position your eye
at the correct angle,

the green light reflecting from many
layers adds together.

Shift the angle just a bit,

and you change the distance
the light travels between layers.

Change it enough, and you’ll reach a point
where the crests match the valleys,

making the waves cancel each other out—
that’s destructive interference.

Different colors have different
wavelengths,

which translates to varying distances
they have to travel

to constructively interfere.

That’s why colors roughly correspond
to silica bead sizes.

The spaces between 210 nanometer beads
are just right to amplify blue light.

For red light, with its long wavelengths,

the silica beads must be close
to 300 nanometers.

Those take a very long time to form,
and because of that,

red is the rarest opal color.

The differences in the arrangements
of the gel lattices

within a particular stone
result in a wide range of color patterns—

everything from broad flash
to pin-fire to the ultra-rare harlequin.

The circumstances that lead
to the formation of precious opal

are so uncommon that they only occur
in a handful of places.

About 95% come from Australia,

where an ancient inland sea
created the perfect conditions.

It was there that the Halley’s Comet opal
formed some 100 million years ago.

Which raises the question:
in the next 100 million years,

silica-rich water will percolate
through the nooks and crannies

of some of the discarded artifacts
of human civilization.

What opalescent plays of light
will one day radiate

from the things we forget in the darkness?

1986 年 11 月的一个吉祥日子,

5 名澳大利亚矿工攀登了疯人山——这个山


任何人在那里挖掘时的精神状态而得名。

当他们的竞争对手
在 2 到 5 米的深度寻找蛋白石时

,Lunatic Hill 辛迪加
钻入了 20 米的地下。

由于他们的大胆,地球
奖励了

他们一个拳头大小、破纪录的蛋白石。

他们将它命名为哈雷彗星蛋白石,

以当时在地球上飞行的更大的岩石冰冷的身体

哈雷彗星蛋白石是一个奇迹,
但矛盾的是,它的独特性是

它最常见的事情。

虽然钻石、红宝石、祖母绿
和其他宝石

通常难以区分,但

没有两颗蛋白石看起来是一样的,

这要归功于一种
称为“颜色变化”的特性。

这种闪闪发光、令人眼花缭乱、
舞动的灯光

来自于
化学、地质学和光学的融合,

它们从最早的时候就定义了蛋白石,在
地下深处。

正是在那里,蛋白石以丰富的东西开始了它的生命
:水。 水从

土壤和岩石的缝隙中滴下,

流过砂岩、石灰岩
和玄武岩,

吸收一种叫做二氧化硅的微观化合物

这种富含二氧化硅的水进入
火山岩、

史前河床、木材
甚至古代生物骨骼内部的空隙。

渐渐地,水开始蒸发

,二氧化硅溶液开始
形成凝胶,在凝胶中,

数以百万计的二氧化硅球

层层形成一系列同心壳。

凝胶最终硬化
成玻璃状材料

,球体沉淀
成晶格结构。

在绝大多数情况下,
这种结构是随意的,

导致外观不显眼的普通蛋白石或罐装
蛋白石。 我们称之为珍贵蛋白石

的微小而迷人的百分比

具有
大小均匀的二氧化硅珠形成有序阵列的区域。

那么为什么这些结构会产生
如此充满活力的展示呢?

答案在于称为干涉的波物理学原理

为简单起见,

让我们看看
当一种单色光(

波长为 500
纳米的绿色)照射到珍贵的蛋白石上时会发生什么。

绿光会散布在
整个宝石中,

并以不同的强度反射回来——

从大多数泛滥的角度,
从完全暗淡的角度,从

令人眼花缭乱的明亮角度反射回来。

正在发生的事情是,一些
绿光从顶层反射出来。

一些从下面的层反射出来。

等等。

当它
从一层到下一层再返回的额外距离

是波长的倍数时——
例如额外的 500 或 1000 纳米——

波的波峰和波谷
相互匹配。

这种现象称为相长
干涉

,它放大波,
产生更亮的颜色。

因此,如果您将眼睛
放在正确的角度,

从多层反射的绿光
会叠加在一起。

稍微改变角度,

就可以改变
光在层之间传播的距离。

改变它,你会达到一个
波峰与山谷相匹配的点,

使波相互抵消——
这就是相消干涉。

不同的颜色具有不同的
波长,

这意味着它们必须经过不同的距离
才能

进行建设性干涉。

这就是为什么颜色大致对应
于硅珠大小的原因。

210纳米珠子之间的间距
正好可以放大蓝光。

对于波长较长的红光

,二氧化硅珠必须
接近 300 纳米。

这些需要很长时间才能形成
,因此,

红色是最稀有的蛋白石颜色。 特定宝石中凝胶晶格

排列的差异

导致了各种颜色图案——

从广泛的闪光
到针火再到超稀有的丑角。

导致形成珍贵蛋白石

的情况非常罕见,它们只发生
在少数几个地方。

大约 95% 来自澳大利亚,

那里古老的内陆海
创造了完美的条件。

大约 1 亿年前,哈雷彗星蛋白石就是在那里
形成的。

这就提出了一个问题:
在接下来的 1 亿年中,

富含二氧化硅的水将渗透
到人类文明

的一些废弃文物
的角落和缝隙中。

有朝一日

,我们在黑暗中忘记的东西会散发出什么样的乳白色光芒?