What if cracks in concrete could fix themselves Congrui Jin

Concrete is the most widely used

construction material in the world.

It can be found in swathes of city pavements,

bridges that span vast rivers,

and the tallest skyscrapers on earth.

But this sturdy substance

does have a weakness:

it’s prone to catastrophic cracking

that costs tens of billions of dollars

to repair each year.

But what if we could avoid that problem,

by creating concrete that heals itself?

This idea isn’t as far-fetched

as it may seem.

It boils down to an understanding

of how concrete forms,

and how to exploit that process

to our benefit.

Concrete is a combination of coarse stone

and sand particles, called aggregates,

that mix with cement, a powdered blend

of clay and limestone.

When water gets added to this mix,

the cement forms a paste and

coats the aggregates, quickly hardening

through a chemical reaction

called hydration.

Eventually, the resulting material

grows strong enough to prop up buildings

that climb hundreds of meters

into the sky.

While people have been using

a variety of recipes to produce cement

for over 4,000 years,

concrete itself

has a surprisingly short lifespan.

After 20 to 30 years,

natural processes like concrete shrinkage,

excessive freezing and thawing,

and heavy loads can trigger cracking.

And it’s not just big breaks that count:

tiny cracks can be just as dangerous.

Concrete is often used

as a secondary support

around steel reinforcements.

In this concrete, even small cracks

can channel water, oxygen,

and carbon dioxide that corrode the steel

and lead to disastrous collapse.

On structures like bridges and highways

that are constantly in use,

detecting these problems

before they lead to catastrophe

becomes a huge and costly challenge.

But not doing so

would also endanger thousands of lives.

Fortunately, we’re already experimenting

with ways this material

could start fixing itself.

And some of these solutions

are inspired by concrete’s

natural self-healing mechanism.

When water enters these tiny cracks,

it hydrates the concrete’s calcium oxide.

The resulting calcium hydroxide

reacts with carbon dioxide in the air,

starting a process called

autogenous healing, where

microscopic calcium carbonate crystals

form and gradually fill the gap.

Unfortunately, these crystals

can only do so much, healing cracks

that are less than 0.3mm wide.

Material scientists have figured out how

to heal cracks up to twice that size by

adding hidden glue into the concrete mix.

If we put adhesive-filled fibers

and tubes into the mixture,

they’ll snap open when a crack forms,

releasing their sticky contents

and sealing the gap.

But adhesive chemicals often behave

very differently from concrete,

and over time, these adhesives

can lead to even worse cracks.

So perhaps the best way to heal

large cracks is to give concrete

the tools to help itself.

Scientists have discovered that

some bacteria and fungi

can produce minerals,

including the calcium carbonate

found in autogenous healing.

Experimental blends of concrete

include these bacterial or fungal spores

alongside nutrients in their concrete mix,

where they could lie dormant

for hundreds of years.

When cracks finally appear

and water trickles into the concrete,

the spores germinate, grow, and consume

the nutrient soup that surrounds them,

modifying their local environment

to create the perfect conditions

for calcium carbonate to grow.

These crystals gradually fill the gaps,

and after roughly three weeks,

the hard-working microbes

can completely repair cracks

up to almost 1mm wide.

When the cracks seal,

the bacteria or fungi will make spores

and go dormant once more—

ready to start a new cycle of self-healing

when cracks form again.

Although this technique

has been studied extensively,

we still have a ways to go

before incorporating it

in the global production of concrete.

But, these spores have huge potential

to make concrete

more resilient and long-lasting—

which could drastically reduce

the financial and environmental cost

of concrete production.

Eventually, these microorganisms

may force us to reconsider

the way we think about our cities,

bringing our inanimate concrete jungles

to life.

混凝土是世界上使用最广泛的

建筑材料。

它可以在大片的城市人行道

、横跨浩瀚河流的桥梁

和地球上最高的摩天大楼中找到。

但这种坚固的物质

确实有一个弱点:

它容易发生灾难性的开裂

,每年要花费数百亿美元

来修复。

但是,如果我们可以

通过创造能够自我修复的混凝土来避免这个问题呢?

这个想法并不

像看起来那么牵强。

它归结为对

具体形式的理解,

以及如何利用该过程

为我们谋福利。

混凝土是粗石

和沙粒的组合,称为骨料,

与水泥混合,水泥

是粘土和石灰石的粉末混合物。

当水被添加到这种混合物中时

,水泥会形成糊状物并

覆盖在骨料上,

通过称为水化的化学反应迅速硬化

最终,由此产生的材料

变得足够坚固,足以支撑

爬上数

百米的建筑物。

虽然人们

使用各种配方生产

水泥已有 4000 多年的历史,但

混凝土本身的

寿命却短得惊人。

20 到 30 年后,

混凝土收缩、

过度冻融

和重载等自然过程会引发开裂。

而且,重要的不仅仅是大裂缝:

微小的裂缝也同样危险。

混凝土通常

用作钢筋周围的辅助支撑

在这种混凝土中,即使是很小的裂缝

也会引导水、氧气

和二氧化碳,从而腐蚀钢材

并导致灾难性的倒塌。

在桥梁和

高速公路等经常使用的结构上,

在它们导致灾难之前检测这些问题

成为一项巨大且代价高昂的挑战。

但不这样做

也会危及数千人的生命。

幸运的是,我们已经在试验

这种材料

可以开始自我修复的方法。

其中一些解决

方案的灵感来自混凝土的

自然自愈机制。

当水进入这些微小的裂缝时,

它会使混凝土的氧化钙水化。

生成的氢氧化钙

与空气中的二氧化碳发生反应,

开始一个称为自愈的过程

,在此过程中形成

微小的碳酸钙

晶体并逐渐填补空隙。

不幸的是,这些晶体

只能起到这么多的作用,可以治愈

小于 0.3 毫米宽的裂缝。

材料科学家已经想出了如何

通过

在混凝土混合物中添加隐藏的胶水来治愈两倍大小的裂缝。

如果我们将充满粘合剂的纤维

和管子放入混合物中,

它们会在裂缝形成时突然打开,

释放其中的粘性物质

并密封间隙。

但是粘合剂化学品的行为通常

与混凝土大不相同,

随着时间的推移,这些粘合剂

会导致更严重的裂缝。

所以也许治愈大裂缝的最好方法

是给混凝土

提供帮助自己的工具。

科学家们发现,

一些细菌和真菌

可以产生矿物质,

包括

在自体愈合中发现的碳酸钙。

混凝土的实验混合物

包括这些细菌或真菌孢子

以及混凝土混合物中的营养物质

,它们可以在其中休眠

数百年。

当裂缝最终出现

并且水滴入混凝土时

,孢子会发芽、生长并消耗

周围的营养汤,从而

改变它们的当地环境

,为碳酸钙的生长创造完美的条件

这些晶体逐渐填补了缝隙

,大约三周后,

这些勤劳的微生物

可以完全修复

宽达近 1 毫米的裂缝。

当裂缝封闭时

,细菌或真菌会产生孢子

并再次进入休眠状态——

准备好在裂缝再次形成时开始新的自我修复循环

尽管这项技术

已被广泛研究,

在将其

纳入全球混凝土生产之前,我们还有很长的路要走。

但是,这些孢子具有

使混凝土

更具弹性和持久性的巨大潜力——

这可以大大降低混凝土生产

的财务和环境

成本。

最终,这些微生物

可能会迫使我们重新

考虑我们对城市的看法,

让我们的无生命的混凝土

丛林栩栩如生。