The satisfying math of folding origami Evan Zodl

As the space telescope prepares
to snap a photo,

the light of the nearby
star blocks its view.

But the telescope
has a trick up its sleeve:

a massive shield to block the glare.

This starshade has a diameter
of about 35 meters—

that folds down to just under 2.5 meters,

small enough to carry
on the end of a rocket.

Its compact design is based
on an ancient art form.

Origami, which literally translates
to “folding paper,”

is a Japanese practice dating back
to at least the 17th century.

In origami, the same simple concepts

yield everything from a paper crane
with about 20 steps,

to this dragon with over 1,000 steps,
to a starshade.

A single, traditionally square sheet
of paper

can be transformed into almost
any shape, purely by folding.

Unfold that sheet,
and there’s a pattern of lines,

each of which represents a concave
valley fold or a convex mountain fold.

Origami artists arrange these folds
to create crease patterns,

which serve as blueprints
for their designs.

Though most origami models
are three dimensional,

their crease patterns are usually designed
to fold flat

without introducing any new creases
or cutting the paper.

The mathematical rules behind
flat-foldable crease patterns

are much simpler than those behind
3D crease patterns—

it’s easier to create an abstract 2D
design and then shape it into a 3D form.

There are four rules that any
flat-foldable crease pattern must obey.

First, the crease pattern
must be two-colorable—

meaning the areas between creases
can be filled with two colors

so that areas of the same
color never touch.

Add another crease here,

and the crease pattern no longer
displays two-colorability.

Second, the number
of mountain and valley folds

at any interior vertex
must differ by exactly two—

like the three valley folds
and one mountain fold that meet here.

Here’s a closer look at what happens
when we make the folds at this vertex.

If we add a mountain fold at this vertex,
there are three valleys and two mountains.

If it’s a valley, there are four valleys
and one mountain.

Either way, the model doesn’t fall flat.

The third rule is that if we number
all the angles

at an interior vertex moving
clockwise or counterclockwise,

the even-numbered angles must
add up to 180 degrees,

as must the odd-numbered angles.

Looking closer at the folds,
we can see why.

If we add a crease and number
the new angles at this vertex,

the even and odd angles no longer
add up to 180 degrees,

and the model doesn’t fold flat.

Finally,
a layer cannot penetrate a fold.

A 2D, flat-foldable base is often
an abstract representation

of a final 3D shape.

Understanding the relationship
between crease patterns, 2D bases,

and the final 3D form
allows origami artists

to design incredibly complex shapes.

Take this crease pattern
by origami artist Robert J. Lang.

The crease pattern allocates areas
for a creature’s legs,

tail, and other appendages.

When we fold the crease pattern
into this flat base,

each of these allocated areas
becomes a separate flap.

By narrowing, bending, and sculpting
these flaps,

the 2D base becomes a 3D scorpion.

Now, what if we wanted to fold 7 of these
flowers from the same sheet of paper?

If we can duplicate
the flower’s crease pattern

and connect each of them in such a way
that all four laws are satisfied,

we can create a tessellation,
or a repeating pattern of shapes

that covers a plane
without any gaps or overlaps.

The ability to fold a large surface
into a compact shape

has applications
from the vastness of space

to the microscopic world of our cells.

Using principles of origami,

medical engineers have re-imagined
the traditional stent graft,

a tube used to open and support
damaged blood vessels.

Through tessellation, the rigid tubular
structure folds into a compact sheet

about half its expanded size.

Origami principles have been used
in airbags, solar arrays,

self-folding robots,
and even DNA nanostructures—

who knows what possibilities
will unfold next.

当太空望远镜
准备拍照时,

附近恒星的光
挡住了它的视线。

但望远镜
有一个窍门:

一个巨大的盾牌来阻挡眩光。

这个遮光罩的
直径约为 35 米——

折叠起来不到 2.5 米,

小到可以
放在火箭的末端。

其紧凑的设计
基于一种古老的艺术形式。

折纸,字面意思
是“折叠纸”,

是日本的一种做法
,至少可以追溯到 17 世纪。

在折纸中,同样简单的概念

产生了从
大约 20 步的纸鹤

到超过 1,000 步的龙,
再到星影的一切。

一张传统的方形纸

可以
完全通过折叠变成几乎任何形状。

展开那张纸
,有一条线图案,

每条线代表一个凹
谷褶皱或一个凸山褶皱。

折纸艺术家安排这些折叠
以创建折痕图案,

作为他们设计的蓝图。

尽管大多数折纸模型
都是三维的,但

它们的折痕图案通常设计
成可以平折

而不会引入任何新折痕
或剪裁纸张。 平面可折叠折痕图案

背后的数学规则比 3D 折痕图案背后的数学规则

要简单得多——

更容易创建抽象的 2D
设计,然后将其塑造成 3D 形式。

任何
平面可折叠折痕图案都必须遵守四个规则。

首先,折痕图案
必须是双色的——

这意味着折痕之间的区域
可以用两种颜色填充,

这样相同
颜色的区域就不会接触。

在此处添加另一个折痕

,折痕图案不再
显示双色性。

其次,任何内部顶点处
的山褶和山谷褶皱的数量

必须相差正好两个——

就像在这里相遇的三个山谷褶皱
和一个山褶皱一样。

下面仔细看看
当我们在这个顶点进行折叠时会发生什么。

如果我们在这个顶点加上一个山褶,
就有三个山谷和两个山。

若为谷,则有四
谷一山。

无论哪种方式,模型都不会落空。

第三条规则是,如果我们
对顺时针或逆时针

移动的内部顶点处的所有角度进行

编号,则偶数角度必须
加起来 180 度,

奇数角度也必须如此。

仔细观察褶皱,
我们可以看出原因。

如果我们
在此顶点添加折痕并为新角度编号,

则偶数和奇数角度之和不再
等于 180 度,

并且模型不会折叠平整。

最后,
一层不能穿透褶皱。

2D 平面可折叠底座通常

是最终 3D 形状的抽象表示。

了解
折痕图案、2D 基础

和最终 3D 形式之间的关系,
使折纸艺术家

能够设计出极其复杂的形状。

以折纸艺术家 Robert J. Lang 的折痕图案为例。

折痕图案
为生物的腿、

尾巴和其他附属物分配区域。

当我们将折痕图案折叠
到这个平坦的底座上时,

这些分配区域中的每一个都
成为一个单独的翻盖。

通过缩小、弯曲和雕刻
这些襟翼

,2D 底座变成了 3D 蝎子。

现在,如果我们想
从同一张纸上折出 7 朵这样的花呢?

如果我们可以
复制花朵的折痕图案


以满足所有四个定律的方式连接它们,

我们就可以创建一个曲面细分,
或者一个覆盖平面的重复形状图案,

没有任何间隙或重叠。

将大表面折叠
成紧凑形状的

能力适用
于从广阔的空间

到我们细胞的微观世界。

利用折纸原理,

医学工程师重新构想
了传统的支架移植物,

一种用于打开和支撑
受损血管的管子。

通过镶嵌,刚性管状
结构折叠成紧凑的片材,

约为其展开尺寸的一半。

折纸原理已被
用于安全气囊、太阳能电池板、

自折叠机器人,
甚至 DNA 纳米结构——

谁知道
接下来会出现什么可能性。