Visualizing the medical data explosion Anders Ynnerman

I will start by posting a little bit of

a challenge the challenge of dealing

with data data that we have to deal with

in medical situations it’s really a huge

challenge for us and this is our beast

of burden this is a computer tomography

machine CT machine it’s a fantastic

device it uses x-rays x-ray beams that

are rotating very fast around the human

body it takes about 30 seconds to go

through the whole machine and is

generating enormous amounts of

information that comes out of the

machine so this is a fantastic machine

that we can use for improving healthcare

but as I said it’s also a challenge for

us and the challenge is really found in

this picture here it’s the medical data

explosion that we’re having right now

we’re facing this problem and let me

step back in time let’s just go back a

few years in time and see what happened

back then these machines that came out

they started coming in the 1970s they

would scan off human bodies and they

would generate about a hundred images of

the human body and I’ve taken the

liberty just for clarity to translate

that to data sizes that would correspond

to about 15 megabytes of data which is

small when you think about the data that

we can handle today just on normal

mobile devices if you translate that to

phone books it’s about one litre of

phone books in the pile looking at what

we’re doing today with these machines

that we have we can just in a few

seconds get 24,000 images out of the

body and that will correspond to about

20 gigabytes of data or 800 phone books

and the pod will then be 200 meters of

phone books what’s about to happen and

we’re seeing this it’s beginning a

technology trend that’s happening right

now is that we’re starting to look at

time-resolved situations as well so

we’re getting the dynamics out of the

body as well and just assume that we

will be collecting data during five

seconds and that will correspond to

about one terabyte of data that’s

800,000 books and 16 kilometres of phone

books there’s one patient one data set

and this is what we have to deal with so

this is really the enormous challenge

that we have

today this is 25,000 images you know

imagine that the days when we had

radiologists

doing this they would put up 25,000

images that would go like this 25 there

there is the problem right they can’t do

that anymore that’s impossible so we

have to do something that’s a little bit

more intelligent than doing this okay so

what we do is that we put all these

slices together

imagine that you slice your body in all

these directions and then you try to put

the slices back together again into a

pile of data into a block of data so

this is really what we’re doing so this

gigabyte a terabyte of data we’re

putting it into this block but of course

the block of data just contains the

amount of x-ray that’s been absorbed in

each point in the human body so what we

need to do is to figure out a way of

looking at the things that we do want to

look at and make things transparent that

we don’t want to look at so transforming

the data set into something that looks

like this

and this is a challenge this is a huge

challenge for us to do that using

computers even though they’re getting

faster and better all the time it’s a

challenge to deal with gigabytes of data

or terabytes of data and extracting the

relevant information I want to look at

the heart I want to look at the blood

vessels I want to look at the liver

maybe even finally the tumor in some

cases okay so this is where this little

dude comes into play this is my daughter

this is a as of 9:00 a.m. this morning

she’s playing a computer game she’s only

2 years old and she’s having a blast so

she’s really the the driving force

behind the development of graphics

processing units as long as kids are

playing computer games graphics is

getting better and better and better so

please go back home tell your kids to

play more games because that’s what I

need so what’s inside of this machine is

what enables me to do the things that

I’m doing with the medical data so

really what I’m doing is using these

fantastic little devices and you know

going back maybe 10 years in time when I

got the funding to buy my first graphics

computer

it was a huge machine it was cabinets of

processors and storage and everything I

paid about 1 million dollars for that

machine that machine is today about as

fast as my iPhone

so every month there are new graphics

cards coming out and here’s a few of the

latest ones from the vendors and Nvidia

ATI Intel is out there as well and you

know for a few hundred bucks you can get

these things and put them into your

computer and you can do fantastic things

with these graphics cards so this is

really what’s enabling us to deal with

the explosion of data in medicine

together with some really nifty work in

terms of algorithms compressing data

extracting the relevant information that

people are doing research on so I’m

going to show you a few examples of what

we can do this is the data set that was

captured using a CT scanner you can see

this is a full data it’s a it’s a woman

you can see the hair you can see the

individual structures and of the woman

you can see that there is scattering or

x-rays on the teeth the metal in the

teeth that’s that’s what those artifacts

are coming from but fully interactively

on standard graphics cards I on a normal

computer I can just put in a clip plane

and of course all the data is inside so

I can start rotating I can look at it

from different angles and I can see that

this woman had a problem there was a she

had a bleeding up in the brain and

that’s been fixed with a little stent a

metal clamp that’s tightening up the

vessel and just by changing the

functions and I can decide what’s going

to be transparent and what’s going to be

visible I can look at the skull

structure and I can see that okay this

is where they open up the skull on this

woman and that’s where they went in so

these are fantastic images they’re

really high resolution and they’re

really showing us what we can do with

with standard graphics cards today

now we have really made use of this and

we have tried to squeeze a lot of data

into the system and one of the

applications that we’ve been working on

and this has gotten a little bit of

traction worldwide is the application of

virtual autopsies so again looking at

very very large datasets and you saw

those full-body scans that we can do

we’re just pushing the body through the

whole CT scanner and just in a few

seconds we can get a full-body data set

so so this is from a virtual autopsy and

you can see how I’m gradually peeling

off first you saw the body bag that the

body came in that I’m peeling off the

skin you can see the muscles and

eventually

you can see the bone structure of this

woman now at this point I would also

like to emphasize that with the greatest

respect for the people that I’m now

going to show I’m going to show you a

few cases of virtual autopsies so it’s a

great respect for the people that have

died under violent circumstances that

I’m showing these pictures to you in the

forensic case and this is something that

there’s been approximately 400 cases so

far just in the part of Sweden that I

come from that has been undergoing

virtual autopsies in the past four years

so this will be the typical workflow

situation that police would decide in

the evening when there’s a case coming

in they would decide okay this is the

case where we need to do an autopsy so

in the morning between 6:00 and 7:00 in

the morning the board is then

transported inside of the body bag to

our Center and is being scanned through

one of the CT scanners and then the

radiologist together with the

pathologist and sometimes the forensic

scientist looks at the data that’s

coming out and they have a joint session

and then they decide what to do in the

real physical autopsy after that now

looking at a few cases here’s one of the

first cases that we had you can really

see the details of the data set it’s

very high resolution and it’s our

algorithms that allow us to zoom in on

all the details

and again it’s fully interactive so you

can rotate and you can look at things in

real time all these systems here without

saying too much about this case this is

a traffic accident and a drunk driver

that hit a woman and it’s very very easy

to see the damages on the bone structure

and the course of death is the broken

neck and this woman also ended up under

the car so she’s quite badly beaten up

by by this injury here’s another case a

knifing and this is also again showing

us what we can do it’s very easy to look

at metal artifacts that we can show

inside of the body you can also see some

of the some of the artifacts from from

the teeth that’s actually the feeling in

the teeth but because I’ve set the

functions to show me metal and make

everything else transparent here’s

another violin case this really didn’t

kill the person the person was killed by

stabs in the heart but they just

deposited the knife by putting it

through one of the eyeballs here’s

another case it’s very very interesting

for us to

be able to look at things like knife

stabbings here you can see that knife

went through the heart it’s very easy to

see how air has been leaking from one

part to another part which it’s

difficult to do in a normal standard

physical autopsy so it really really

helps the the criminal investigation to

establish the cause of death and in some

cases also directing investigation in

the right direction to find out who the

killer really wasn’t

here’s another case that I think is

interesting here we you can see a bullet

that has lodged just next to the spine

on this person and what we’ve done is

that we’ve turned the bullet into a

light source so the the bullet is

actually shining and it makes it really

easy to find these fragments during a

physical autopsy if you have to dig

through the body to find these fragments

that’s actually quite hard to do one of

the things that I’m really really happy

to be able to show you here today is our

virtual autopsy table it’s a touch

device that we have developed based on

these algorithms using standard graphics

GPUs it actually looks like this just to

give you a feeling for what it looks

like it’s really an it really just works

like a huge iPhone so we’ve implemented

all the gestures that you can do on the

table

and you can think of it as an enormous

touch interface so if you were thinking

of buying an iPad forget about it this

is what you want instead Steve I hope

you’re listening to this way okay so

it’s a very nice little device so if you

have the opportunity please try it out

it’s it’s really a hands-on experience

so it gained some traction and we’re

trying to roll this out and trying to

use it for educational purposes but also

perhaps in the future in a more clinical

situation that’s a YouTube video that

you can download and look at this if you

want to convey the information to other

people about virtual autopsies okay now

we’re talking about touch let’s let me

move on to really touching data and this

is a bit of science fiction now so so

we’re moving into the really the future

this is not really what the medical

doctors are using right now but I hope

they will in the future so what you’re

seeing on the left is a touch device

it’s a it’s a little mechanical pen that

has very very fast depth motors inside

of the tongue so I can generate a force

feedback so when I perch

we touched data it will generate forces

independent so I get a feedback okay so

in this particular situation is it’s a

scan or the living person I have this

pen and I look at the data and I moved

the pen towards the head and all of a

sudden my feet of assistance okay so I

can feel the skin if I push a little bit

harder I’ll go through the skin and I

can feel the bone structure inside if I

push even harder I’ll go through the

bone structure especially close to the

ear where the bone is very soft and then

I can feel the brain inside and this

will be a slushie weightless so this is

really nice and you know to take that

even further this is at heart and this

is also due to these fantastic new

scanners that justing in 0.3 seconds I

can scan the whole heart and I can do

that with time resolution so just

looking at this heart I can playback a

video here and this is Collier on one of

my graduate students is been working on

this project and he’s sitting there in

front of the haptic device the force

feedback system and he’s moving his pen

towards the heart and the heart is not

beating in front of him so you can see

how the heart’s beating he’s taking the

pen and he’s moving it towards the heart

and he’s putting it on the heart and

then he feels the heartbeats from the

real living patient and he can examine

how the heart is moving they can go

inside push inside of the heart and

really feel how the valves are moving

and this I think is really the future

for for heart surgeons so I mean it’s

probably the wet dream for a heart

surgeon to be able to go inside of the

patients heart before we actually do

surgery and do that with high quality

resolution data so this is really neat

now we’re going even further into

science fiction and we heard a little

bit about functional MRI now this is

really really an interesting project MRI

is using magnetic fields and radio

frequencies to scan off the brain or any

part of the body so what we’re really

getting out of this is information of

the structure of the brain but we can

also measure the difference in magnetic

properties of blood that’s oxygenated

and blood as depleted of oxygen that

means that it’s possible to map out the

activity of the brain so this is

something that we’ve been working on and

you just saw Matt’s the research

engineer they’re going into the MRI

system and he was wearing goggles

they could actually see things in the

goggle so I could present things to him

while he’s in the scanner and this is a

little bit freaky

because what Matt’s is seeing is

actually this he’s seeing his own brain

so much is doing something here probably

he’s going like this with his right hand

because the left side is is activated

with the motor cortex and then you can

see that at the same time these

visualizations are brand new and this is

something that we’ve been researching

for a little while this is another

sequence of Matz’s brain and here we

asked much to go to calculate backwards

from 100 so he’s going 100 97 94 and

then he’s going backwards and you can

see how little math processor is working

up here in his brain and is lighting up

the whole brain this is fantastic we can

do this in real time we can investigate

things we can tell him to do things you

can also see that his visual cortex is

activated in the back of the head

because that’s where he’s seeing he’s

seeing his own brain and it’s also

hearing our instructions when we tell

him to do things the signal is really

deep inside of the brain as well and

it’s shining through because all of the

data is inside of this volume and in

just a second here you will see ok here

mots ok now move your left foot okay so

it’s going like this ok but for 20

seconds it’s going like that and all of

a sudden it lights up up here so we get

motor cortex activation up there so this

is really really nice and and I think

this is a great tool and connecting also

to the previous talk here this is

something that we could use as a tool to

really understand how the neurons are

working how the brain is working and we

can do this was a very very high visual

quality and very fast resolution now

we’re also having a bit of fun at the

center so this is a cat scan computed

tomography so this is a lion from the

local Zoo outside of norrkoping called

Morden Elsa so she came to the center

and they sedated her and then put it

straight into the scanner and of course

I get the whole data set from the lion

and I can do very nice images like this

I can peel off the layer of the lion I

can look inside of it and you know we’ve

been experimenting with this and I think

this is a great application for the

future of this technology because

there’s very little known about the

animal Anatomy what’s known out there

for veterinarians it’s kind of basic

information now we can scan all sorts of

things all sorts of animals

the only problem is to fit it into the

machine okay so here’s a bear it was

kind of hard to get it in and you know

the bear is a cuddly friendly animal and

here it is here’s the nose of the bear

and you know you might want to cuddle

this one until you’ve changed the

functions look at this so be aware of

the bear alright so with that I’d like

to to thank all the people that have

helped me to generate these images it’s

a huge effort that goes into doing this

gathering the data and developing the

algorithms writing all the software so

some very talented people my motto is

always I only hire people that are

smarter than I am and most of these are

smarter than I am so thank you very much

我将首先发布一个

挑战 处理

我们在医疗情况下必须处理的数据数据的挑战 这对我们

来说确实是一个巨大的

挑战 这是我们

的负担 这是一台计算机断层扫描

机 CT 机器 它是 一个奇妙的

设备它使用 X 射线 X 射线束

在人体周围非常快速地旋转

它需要大约 30 秒才能

通过整个机器并且从机器中

产生大量

信息

所以这是一个很棒的

我们可以用来改善医疗保健的机器,

但正如我所说,这对我们来说也是一个挑战

,挑战就在

这张照片中,这是我们现在面临的医疗数据

爆炸,

我们正面临这个问题,让我来

时光倒流 让我们回到

几年前 看看当时发生

了什么 这些机器从

1970 年代开始问世

他们会扫描人体并

生成 一百张人体图像,

为了清楚起见,我冒昧

地将其转换为对应

于大约 15 兆字节数据

的数据大小

设备 如果你把它翻译成

电话簿 大约有一公升的

电话簿 看看

我们今天用这些机器

做什么 我们可以在几

秒钟内从身体中取出 24,000 张图像

,这将对应 到大约

20 GB 的数据或 800 个电话簿

,然后吊舱将是 200 米的

电话簿 即将发生的事情,

我们正在看到它正在开始一种

技术趋势,现在正在发生的

是我们开始关注

时间 - 解决了各种情况,因此

我们也将动态从

体内取出,并假设我们

将在五

秒钟内收集数据,这将对应于

大约 1 TB 的数据,即

800,000 本书 s 和 16 公里的

电话簿 有一个病人 一个数据

集 这就是我们必须处理的问题 所以

这确实是我们今天面临的巨大挑战

这是 25,000 张图像 你知道

想象一下当我们有

放射科医师

这样做的日子他们 会放 25,000

张像这样的图像 25

有一个问题,他们不能再这样

做了,这是不可能的,所以我们

必须做一些

比这样做更聪明的事情,所以

我们所做的就是我们把 所有这些

切片在一起

想象你在所有这些方向上切片你的身体

然后你尝试

将切片重新组合成

一堆数据 变成一个数据块 所以

这就是我们正在做的事情 所以这个

千兆字节 太字节 数据我们

将其放入此块中,但

当然数据块仅包含

人体每个点吸收的 X 射线量,因此我们

需要做的是找出一种

查看方法 th 我们确实想要

查看的内容并使我们不想查看的事情变得透明,

因此

将数据集转换为看起来

像这样的东西

,这是一个挑战,这对我们来说是一个巨大的

挑战,即使使用计算机也能做到这一点

尽管它们一直在变得越来越

快,但

处理千兆字节

或兆字节的数据并提取

相关信息是一个挑战 我

想看心脏 我想看

血管 我想看

在某些情况下,肝脏甚至可能最终是肿瘤

好的,所以这就是这个小

家伙发挥作用的地方 这是我的女儿

这是截至今天早上 9:00,

她正在玩电脑游戏 她只有

2 岁,她正在玩得很开心 所以

她真的

是图形处理单元发展的推动力

只要孩子们在

玩电脑游戏图形

越来越好所以

请回家告诉你的孩子

多玩游戏 因为这就是我所

需要的所以这台机器内部

的东西使我能够做

我正在用医疗数据做的

事情所以我正在做的是使用这些

奇妙的小设备你

知道可能追溯到 10 年前 当我

获得资金购买我的第一台图形

计算机时,

它是一台巨大的机器,它是

处理器和存储柜,我

为这台机器支付了大约 100 万美元,这

台机器今天的

速度和我的 iPhone 一样快,

所以每个月都有 新的

显卡问世了,这里有

一些来自供应商的最新显卡,Nvidia

ATI 英特尔也在那里,你

知道花几百美元就可以买到

这些东西,然后把它们放进你的

电脑,你就可以做很棒的事情

有了这些显卡,这

确实使我们能够处理

医学数据的爆炸式增长,

以及在算法压缩数据提取相关信息方面的一些非常漂亮的工作

人们正在研究,所以我

将向您展示

我们可以做的一些示例 这是

使用 CT 扫描仪捕获的数据集 您可以看到

这是完整的数据 这是一个女人

您可以看到 头发 你可以看到

个体结构和女人

你可以看到牙齿上有散射或

X 射线 牙齿中的金属

就是这些伪影

的来源,但

在标准显卡上完全交互我在普通

电脑 我可以放一个剪辑

平面 当然所有的数据都在里面 所以

我可以开始旋转 我可以

从不同的角度看它 我可以看到

这个女人有问题 她

在里面流血了 大脑

用一个小支架固定 一个

金属夹子 收紧

血管 只需改变

功能 我就可以决定

什么是透明的 什么是

可见的 我可以观察头骨

结构 我可以看到 好吧这个

是他们在这个

女人身上打开头骨的地方,然后他们就进去了,所以

这些都是很棒的图像,它们的

分辨率非常高,它们

真的向我们展示了我们今天可以用标准显卡做什么,

现在我们已经真正使用了 其中,

我们试图将大量数据压缩

到系统中

,我们一直在研究的其中一个应用程序在

全球范围内受到了一点关注,那就是虚拟尸检的应用程序,

所以再次查看

非常大 数据集,你看到

了我们可以做的全身扫描

我们只是将身体推过

整个 CT 扫描仪,只需几

秒钟,我们就可以获得全身数据集

,所以这是来自虚拟尸检和

你 可以看到我是如何逐渐剥离的

,首先你看到了身体进入的尸体袋

,我正在剥离

皮肤,你可以看到肌肉,

最终

你可以看到这个女人的骨骼结构,

现在我会 也

想强调一下 t 怀着对

我现在要展示的人的最大尊重

我将向您展示

一些虚拟尸检案例 所以我展示这些照片

是对在暴力情况下死亡的人们的极大尊重

法医案件中,

到目前为止,仅在我来自的瑞典部分地区就有大约 400 起案件

,在过去四年中一直在进行虚拟尸检,

所以这将是警方会采取的典型工作流程

情况

晚上决定,当有案子进来时

,他们会决定

好的 到

我们的中心,并通过

其中一台 CT 扫描仪进行扫描,然后

放射科医生与病理学家一起进行扫描

,有时法医

科学家会查看出来的数据

,他们有一个联合会议

和 th 然后他们决定在

真正的身体解剖之后做什么 现在

看几个

案例 这是我们第一个案例之一 你可以真正

看到数据集的细节 它

非常高分辨率并且是我们的

算法使我们能够 放大

所有细节

,它又是完全互动的,所以你

可以旋转,你可以

实时查看所有这些系统在

这里不用多说这个案例这是

一起交通事故和一个醉酒的

司机撞到了一个女人,它是 很

容易看到骨骼结构的损伤

,死亡过程是

脖子骨折,这个女人也被压

在车下,所以她

被这个伤势严重殴打 这是另一个案例是

刀,这也再次显示

我们可以做什么 很容易

看到金属制品 我们可以

在身体内部展示 你也可以

从牙齿上看到一些制品 这实际上是牙齿的感觉

但是因为我 ‘已经设置

了向我展示金属并使

其他一切透明的功能 这是

另一个小提琴盒 这并没有

杀死被

刺伤心脏的人 但他们只是

通过将刀

穿过其中一个眼球放置了刀

另一个案例 对我们来说非常非常有趣

这里可以看到刀刺之类的东西 你可以看到刀

穿过心脏 很容易

看出空气是如何从一个

部位泄漏到另一个部位

很难做到的 一个正常的标准

尸检,所以它真的

有助于刑事调查

确定死因,在某些

情况下,还可以将调查引导

到正确的方向,以找出

凶手真的不是

这里的另一个我认为

有趣的案例在这里 我们你可以看到一颗子弹卡

在这个人的脊椎旁边,我们所做的

是我们把子弹变成了一个

光源,所以公牛 et

实际上是发光的,

如果您必须

在尸体中挖掘以找到

这些实际上很难做

的事情,我真的很高兴

能够在尸体解剖期间找到这些碎片 今天在这里向您展示的是我们的

虚拟验尸台 它

是我们基于

这些算法使用标准图形

GPU 开发的触摸设备 它实际上看起来像这样只是为了

让您感觉它看起来

真的像它真的

就像 一个巨大的 iPhone,所以我们已经实现

了你可以在桌子上做的所有手势

,你可以把它想象成一个巨大的

触摸界面,所以如果你

想买一个 iPad,忘了它,这

就是你想要的,而不是史蒂夫,我希望

您正在以这种方式收听,所以

它是一个非常好的小设备,所以如果您

有机会,请尝试一下

,这真的是一种动手体验,

因此它获得了一些牵引力,我们正在

尝试推出它 并尝试

将其用于教育目的,但也

可能在将来用于更临床的

情况,这是一个 YouTube 视频,

如果您

想将有关虚拟尸检的信息传达给其他

人,可以下载并查看此视频,好吧,现在

我们正在谈论 关于触摸 让我们

继续讨论真正感人的数据,这

现在有点科幻,所以

我们正在进入真正的未来,

这不是

医生现在正在使用的,但我希望

他们会在 未来,所以你

在左边看到的是一个触摸设备

,它是一个小型机械笔,

在舌头内部有非常快速的深度马达,所以我可以产生力

反馈,所以当我栖息时

我们触摸数据它会产生力

独立,所以我可以得到反馈,所以

在这种特殊情况下是

扫描还是活着的人我有这支

笔,我查看数据,然后

将笔移向头部,

突然间我的脚可以帮助 是的,所以

如果我用力一点,我会感觉到皮肤 我会穿过皮肤,如果我用力一点

,我

会感觉到里面的骨骼结构

我会穿过

骨骼结构,特别是靠近骨头的

耳朵 非常柔软,然后

我能感觉到里面的大脑,这

将是一个失重的泥浆,所以这

真的很好,你知道

更进一步,这是核心,这

也是由于这些出色的新

扫描仪在 0.3 秒内完成 我

可以扫描整个心脏,我可以

通过时间分辨率来做到这一点,所以只要

看着这颗心脏,我就可以

在这里播放视频,这是科利尔,

我的一个研究生正在做

这个项目,他坐在

前面 触觉设备 力

反馈系统,他将笔

移向心脏,心脏没有

在他面前跳动,因此您可以

看到心脏的跳动情况

然后他感觉到

真实病人的心跳,他可以检查

心脏是如何运动的,他们可以进入

心脏内部,

真正感受到瓣膜是如何运动的

,我认为这真的

是心脏外科医生的未来,所以我 这意味着

对于心脏

外科医生来说,能够

在我们实际进行手术之前进入患者心脏

并使用高质量的

分辨率数据做到这一点可能是梦寐以求的,所以这真的很简洁,

现在我们将进一步进入

科幻小说,我们 现在听说了

一些关于功能性核磁共振的知识,这

真的是一个非常有趣的项目

核磁共振利用磁场和无线电

频率扫描大脑或

身体的任何部位,所以我们真正从中

得到的

是结构信息 大脑,但我们

也可以测量

含氧

血液和缺氧血液的磁性差异,这

意味着可以绘制出大脑的活动图

这是我们一直在做的事情,

你刚刚看到马特的研究

工程师,他们正在进入 MRI

系统,他戴着护目镜,

他们实际上可以看到护目镜中的东西,

所以我可以在他在的时候向他展示东西

扫描仪,这

有点怪异,

因为马特看到的

实际上是他自己的大脑

在这里做的事情太多了,

他可能会用右手这样做,

因为左侧被

运动皮层激活,然后你 可以

看到同时这些

可视化是全新的,这是

我们已经研究

了一段时间的东西 这

是 Matz 大脑的另一个序列,在这里我们

要求从 100 向后计算

,所以他要 100 97 94

然后他倒退,你可以

看到

他的大脑中有多少数学处理器在工作,并且照亮

了整个大脑这太棒了我们可以

实时做到这一点我们可以调查 吃了

我们可以告诉他做的事情你

还可以看到他的视觉皮层

在脑后部被激活

因为那是他看到他

看到自己的大脑的地方,

当我们告诉他做事时它也会听到我们的指令

信号 也确实

在大脑深处,并且

它正在发光,因为所有

数据都在这个体积内,

只需一秒钟,您就会在这里看到 ok,

mots ok,现在移动你的左脚,好吧,

这样就可以了,但是对于 20

秒就这样,

突然它在这里亮了起来,所以我们

在那里激活了运动皮层,所以

这真的很好,我认为

这是一个很好的工具,也

可以连接到之前的演讲,这是

一些东西 我们可以用它作为一个工具来

真正了解神经元

是如何工作

的 吨 他是猫扫描计算机

断层扫描,所以这是来自

诺尔雪平郊外当地动物园的一头狮子,名叫

Morden Elsa,所以她来到中心

,他们给她镇静剂,然后将其

直接放入扫描仪,当然

我得到了整个数据集 狮子

和我可以拍出非常漂亮的图像

我可以剥掉狮子的那层 我

可以看到里面 你知道我们

一直在试验这个 我认为

这是

这项技术未来的一个很好的应用 因为

动物解剖学

知之甚少 兽医所知道的这是基本

信息 现在我们可以扫描各种各样的

东西 各种各样的

动物 唯一的问题是把它装进

机器好吧 所以这是一只熊 它很

友善 很难让它进去,你

知道熊是一种可爱的友好动物,

这里是熊的鼻子

,你知道你可能想拥抱

它,直到你改变了

功能看看这个,所以要注意

熊好吧,所以我

要感谢所有

帮助我生成这些图像的人,这是

一项巨大的努力,用于

收集数据并开发

编写所有软件的算法,所以

一些非常有才华的人是我的 座右铭始终是

我只雇用

比我聪明的人,其中大多数人

都比我聪明,非常感谢