The basics of the Higgs boson Dave Barney and Steve Goldfarb

Transcriber: Andrea McDonough
Reviewer: Jessica Ruby

So two guys walk into a bar.

Really?

No, seriously.

Two guys walk into a bar,

an ice cream bar:

Dave, a physicist working on the Large Hadron Collider at CERN,

the European laboratory for particle physics,

and Steve, a blues singer.

“Dave, how’s it going?”

“Steve, good to see you!”

“Two scoops of chocolate almond for me.”

“Vanilla shake.”

“Hey, I just saw something about the LHC on TV.

You guys found bozo in your detector?”

“Well, not exactly.

We found a boson,

probably the Higgs boson.”

“What’s that?”

“It’s a particle.”

“Don’t you find particles all the time?”

“Yes, but this one means

that the Higgs field might really exist.”

“Field? What field?”

“The Higgs field.

It’s named after Peter Higgs,

although many others contributed to the idea.

It isn’t a field, like where you grow corn,

but a hypothetical, invisible kind of force field

that pervades the whole universe.”

“Hmmmm, okay.

If it pervades the whole universe,

how come I’ve never seen it?

That’s a bit strange.”

“Well, actually, it’s not that strange.

Think of the air around us.

We can’t see it or smell it.

Well, perhaps in some places we can.

But we can detect its presence with sophisticated equipment,

like our own bodies.

So the fact that we can’t see something

just makes it a bit harder to determine

whether its really there or not.”

“Alright, go on.”

“So, we believe this Higgs field is all around us,

everywhere in the universe.

And what it does is rather special -

it gives mass to elementary particles.”

“What’s an elementary particle?”

“An elementary particle is what we call

particles that have no structure,

they can’t be divided,

they’re the basic building blocks of the universe.”

“I thought those were atoms.”

“Well, atoms are actually made of smaller components,

protons, neutrons, and electrons.

While electrons are fundamental particles,

neutrons and protons are not.

They are made up of other fundamental particles called quarks.”

“Sounds like Russian dolls.

Does it ever end?”

“Actually, we don’t really know.

But our current understanding

is called the Standard Model.

In it, there are two types of fundamental particles:

the fermions, that make up matter,

and the bosons, that carry forces.

We often order these particles

according to their properties, such as mass.

We can measure the masses of the particles,

but we never really knew where this mass came from

or why they have the masses they do.”

“So how does this Higgs field thing explain mass?”

“Well, when a particle passes through the Higgs field,

it interacts and gets mass.

The more it interacts, the more mass it has.”

“OK, I kind of get that, but is it really that important?

I mean, what if there were no Higgs field?”

“If there were no Higgs field,

the world wouldn’t exist at all.

There would be no stars, no planets, no air, no anything,

not even that spoon or the ice cream you’re eating.”

“Oh, that would be bad.

Okay, but where does this Higgs boson fit into things?”

“Alright, now, you see the cherry in my shake?”

“Can I have it?”

“No, not yet. We have to use it as an analogy first.”

“Oh, right, the cherry’s the Higgs boson.”

“No, not quite.

The cherry is a particle moving through the Higgs field, the shake.

The shake gives the cherry its mass.”

“I get it. Okay, so the molecules of the shake are the Higgs bosons!”

“Well, you’re getting closer.

It takes an excitation of the Higgs field

to produce the Higgs boson.

So, for example, if I were to add energy

by, say, dropping this cherry in the shake,”

“Ah, then the drops that spill on the bar

are the Higgs bosons.”

“Almost! The splash itself is the Higgs boson.”

“Are you serious?”

“Well, that’s what quantum mechanics teaches us.

In fact, all particles are excitations of fields.”

“Okay, right. Well, I kind of see why you like particle physics,

it’s quite cool,

strange, but cool.”

“Yeah, you could call it a bit strange,

it’s not like everyday life.

The Higgs boson is an excitation of the Higgs field.

By finding the Higgs boson,

we know that the Higgs field exists.”

“Right. So now you found it,

we know this Higgs field exists.

You must be done.

Is there anything left of particle physics?”

“Actually, we’ve just begun.

It’s a bit like, you know, when Columbus thought

he had found a new route to India.

He’d, indeed, found something new,

but not quite what he was expecting.

So, first, we need to make sure that the boson we found

is actually the Higgs boson.

It seems to fit, but we need to measure

its properties to be sure.”

“How’d you do that?”

“Take a lot more data.

This new boson lives for only a very short time

before it breaks down or decays

into lighter, more stable particles.

By measuring these particles,

you learn about the properties of the boson.”

“And what exactly are you looking for?”

“Well, the Standard Model predicts how often

and in what ways the Higgs boson would decay

to the various, lighter particles.

So we want to see if the particle we have found

is the one predicted by the Standard Model

or if it fits into other possible theoretical models.”

“And if it fits a different model?”

“That would be even more exciting!

In fact, that’s how science advances.

We replace old models with new ones

if they better explain our observations.”

“Right, so it seems like finding this Higgs boson

gives a direction for exploration,

a bit like that Columbus guy heading west.”

“Exactly! And this is really just the beginning.”

抄写员:Andrea McDonough
审稿人:Jessica Ruby

于是两个人走进了一家酒吧。

真的吗?

不,认真的。

两个人走进一家酒吧,

一家冰淇淋吧:

戴夫,在欧洲粒子物理实验室 CERN 研究大型强子对撞机的物理学家

,以及布鲁斯歌手史蒂夫。

“戴夫,怎么样?”

“史蒂夫,很高兴见到你!”

“给我两勺巧克力杏仁。”

“香草奶昔。”

“嘿,我刚刚在电视上看到了一些关于 LHC 的东西。

你们在探测器里发现了笨蛋?”

“嗯,不完全是。

我们发现了一个玻色子,

可能是希格斯玻色子。”

“那是什么?”

“它是一个粒子。”

“你不是一直在寻找粒子吗?”

“是的,但这

意味着希格斯场可能真的存在。”

“领域?什么领域?”

“希格斯场。

它以彼得·希格斯的名字命名,

尽管许多其他人为这个想法做出了贡献。

它不是一个场,就像你种植玉米的地方,

而是一种遍布整个宇宙的假设的、不可见的力场

。”

“嗯嗯,好吧。

如果它遍布整个宇宙,

我怎么从来没有见过?

这有点奇怪。”

“嗯,实际上,这并不奇怪。

想想我们周围的空气。

我们看不见也闻不到它。

嗯,也许在某些地方我们可以。

但我们可以用复杂的设备探测到它的存在,

比如我们自己的身体 .

因此,我们看不到某些东西的事实

只会让我们更难

确定它是否真的存在。”

“好,继续。”

“所以,我们相信这个希格斯场就在我们周围,

在宇宙的任何地方

。它的作用相当特别——

它为基本粒子提供了质量。”

“什么是基本粒子?”

“基本粒子就是我们所说的

没有结构的粒子,

它们不能被分割,

它们是宇宙的基本组成部分。”

“我以为那些是原子。”

“嗯,原子实际上是由更小的成分组成的,

质子、中子和电子。

虽然电子是基本粒子,但

中子和质子不是。

它们是由称为夸克的其他基本粒子组成的。”

“听起来像俄罗斯娃娃。

它会结束吗?”

“实际上,我们并不知道。

但我们目前的理解

被称为标准模型

。其中有两种基本粒子:

构成物质的费米子

和携带力的玻色子。

我们经常订购 这些粒子

根据它们的性质,比如质量。

我们可以测量粒子的质量,

但我们从来不知道这个质量来自哪里,

或者为什么它们有这样的质量。”

“那么这个希格斯场的东西是如何解释质量的呢?”

“嗯,当一个粒子通过希格斯场时,

它会相互作用并获得质量。

它相互作用越多,它的质量就越大。”

“好吧,我有点明白,但它真的那么重要吗?

我的意思是,如果没有希格斯场呢?”

“如果没有希格斯场,

这个世界就根本不存在。

没有星星,没有行星,没有空气,没有任何东西,

甚至连你正在吃的勺子或冰淇淋都没有。”

“哦,那会很糟糕。

好吧,但是这个希格斯玻色子在哪里适合?”

“好吧,现在,你看到我奶昔里的樱桃了吗?”

“我可以拥有吗?”

“不,还没有。我们必须先用它来比喻。”

“哦,对了,樱桃是希格斯玻色子。”

“不,不完全是

。樱桃是穿过希格斯场的粒子,震动

。震动赋予樱桃质量。”

“我明白了。好的,所以奶昔的分子是希格斯玻色子!”

“嗯,你越来越近了

。希格斯场需要激发

才能产生希格斯玻色子。

因此,例如,如果我要

通过将樱桃放入奶昔中来增加能量,”

“啊,那么 洒在条上的水滴

是希格斯玻色子。”

“几乎!飞溅本身就是希格斯玻色子。”

“你是认真的吗?”

“嗯,这就是量子力学教给我们的。

事实上,所有的粒子都是场的激发。”

“好吧,对。好吧,我有点明白你为什么喜欢粒子物理学了,

它很酷,

很奇怪,但很酷。”

“是的,你可以说它有点奇怪,

它不像日常生活

。希格斯玻色子是希格斯场的激发。

通过找到希格斯玻色子,

我们知道希格斯场的存在。”

“对。所以现在你找到了,

我们知道这个希格斯场存在。

你必须完成。

粒子物理学还剩下什么吗?”

“实际上,我们才刚刚开始。

这有点像,你知道,哥伦布认为

他找到了一条通往印度的新路线。

他确实找到了一些新的东西,

但并不完全是他所期望的。

所以,首先 ,我们需要确保我们发现的玻色子

实际上是希格斯玻色子。

它看起来很合适,但我们需要测量

它的性质才能确定。”

“你是怎么做到的?”

“获取更多数据。

这种新的玻色子

在分解或衰

变成更轻、更稳定的粒子之前只存在很短的时间。

通过测量这些粒子,

您可以了解玻色子的特性。”

“你到底在找什么?”

“嗯,标准模型预测

了希格斯玻色子衰

变成各种更轻粒子的频率和方式。

所以我们想看看我们发现的粒子

是否是标准模型预测的粒子,

或者它是否适合其他粒子 可能的理论模型。”

“如果它适合不同的模型呢?”

“那会更令人兴奋!

事实上,这就是科学的进步。

如果旧模型能

更好地解释我们的观察,我们会用新模型替换旧模型。”

“对,所以找到这个希格斯玻色子似乎

给了探索的方向,

有点像哥伦布那个西行的家伙。”

“正是!而这真的只是一个开始。”