What a planet needs to sustain life Dave Brain

I’m really glad to be here.

I’m glad you’re here,

because that would be a little weird.

I’m glad we’re all here.

And by “here,” I don’t mean here.

Or here.

But here.

I mean Earth.

And by “we,” I don’t mean
those of us in this auditorium,

but life,

all life on Earth –

(Laughter)

from complex to single-celled,

from mold to mushrooms

to flying bears.

(Laughter)

The interesting thing is,

Earth is the only place
we know of that has life –

8.7 million species.

We’ve looked other places,

maybe not as hard
as we should or we could,

but we’ve looked and haven’t found any;

Earth is the only place
we know of with life.

Is Earth special?

This is a question I’ve wanted
to know the answer to

since I was a small child,

and I suspect 80 percent
of this auditorium

has thought the same thing
and also wanted to know the answer.

To understand whether
there are any planets –

out there in our solar system or beyond –

that can support life,

the first step is to understand
what life here requires.

It turns out, of all of those
8.7 million species,

life only needs three things.

On one side, all life
on Earth needs energy.

Complex life like us derives
our energy from the sun,

but life deep underground
can get its energy

from things like chemical reactions.

There are a number
of different energy sources

available on all planets.

On the other side,

all life needs food or nourishment.

And this seems like a tall order,
especially if you want a succulent tomato.

(Laughter)

However, all life on Earth
derives its nourishment

from only six chemical elements,

and these elements can be found
on any planetary body

in our solar system.

So that leaves the thing
in the middle as the tall pole,

the thing that’s hardest to achieve.

Not moose, but water.

(Laughter)

Although moose would be pretty cool.

(Laughter)

And not frozen water, and not water
in a gaseous state, but liquid water.

This is what life needs
to survive, all life.

And many solar system bodies
don’t have liquid water,

and so we don’t look there.

Other solar system bodies
might have abundant liquid water,

even more than Earth,

but it’s trapped beneath an icy shell,

and so it’s hard to access,
it’s hard to get to,

it’s hard to even find out
if there’s any life there.

So that leaves a few bodies
that we should think about.

So let’s make the problem
simpler for ourselves.

Let’s think only about liquid water
on the surface of a planet.

There are only three bodies
to think about in our solar system,

with regard to liquid water
on the surface of a planet,

and in order of distance from the sun,
it’s: Venus, Earth and Mars.

You want to have an atmosphere
for water to be liquid.

You have to be very careful
with that atmosphere.

You can’t have too much atmosphere,
too thick or too warm an atmosphere,

because then you end up
too hot like Venus,

and you can’t have liquid water.

But if you have too little atmosphere
and it’s too thin and too cold,

you end up like Mars, too cold.

So Venus is too hot, Mars is too cold,

and Earth is just right.

You can look at these images behind me
and you can see automatically

where life can survive
in our solar system.

It’s a Goldilocks-type problem,

and it’s so simple
that a child could understand it.

However,

I’d like to remind you of two things

from the Goldilocks story
that we may not think about so often

but that I think are really relevant here.

Number one:

if Mama Bear’s bowl is too cold

when Goldilocks walks into the room,

does that mean it’s always been too cold?

Or could it have been just right
at some other time?

When Goldilocks walks into the room
determines the answer

that we get in the story.

And the same is true with planets.

They’re not static things. They change.

They vary. They evolve.

And atmospheres do the same.

So let me give you an example.

Here’s one of my favorite
pictures of Mars.

It’s not the highest resolution image,
it’s not the sexiest image,

it’s not the most recent image,

but it’s an image that shows riverbeds
cut into the surface of the planet;

riverbeds carved by flowing, liquid water;

riverbeds that take hundreds or thousands
or tens of thousands of years to form.

This can’t happen on Mars today.

The atmosphere of Mars today
is too thin and too cold

for water to be stable as a liquid.

This one image tells you
that the atmosphere of Mars changed,

and it changed in big ways.

And it changed from a state
that we would define as habitable,

because the three requirements
for life were present long ago.

Where did that atmosphere go

that allowed water
to be liquid at the surface?

Well, one idea is it escaped
away to space.

Atmospheric particles
got enough energy to break free

from the gravity of the planet,

escaping away to space, never to return.

And this happens with all bodies
with atmospheres.

Comets have tails

that are incredibly visible reminders
of atmospheric escape.

But Venus also has an atmosphere
that escapes with time,

and Mars and Earth as well.

It’s just a matter of degree
and a matter of scale.

So we’d like to figure out
how much escaped over time

so we can explain this transition.

How do atmospheres
get their energy for escape?

How do particles get
enough energy to escape?

There are two ways, if we’re going
to reduce things a little bit.

Number one, sunlight.

Light emitted from the sun can be absorbed
by atmospheric particles

and warm the particles.

Yes, I’m dancing, but they –

(Laughter)

Oh my God, not even at my wedding.

(Laughter)

They get enough energy
to escape and break free

from the gravity of the planet
just by warming.

A second way they can get energy
is from the solar wind.

These are particles, mass, material,
spit out from the surface of the sun,

and they go screaming
through the solar system

at 400 kilometers per second,

sometimes faster during solar storms,

and they go hurtling
through interplanetary space

towards planets and their atmospheres,

and they may provide energy

for atmospheric particles
to escape as well.

This is something that I’m interested in,

because it relates to habitability.

I mentioned that there were two things
about the Goldilocks story

that I wanted to bring to your attention
and remind you about,

and the second one
is a little bit more subtle.

If Papa Bear’s bowl is too hot,

and Mama Bear’s bowl is too cold,

shouldn’t Baby Bear’s bowl be even colder

if we’re following the trend?

This thing that you’ve accepted
your entire life,

when you think about it a little bit more,
may not be so simple.

And of course, distance of a planet
from the sun determines its temperature.

This has to play into habitability.

But maybe there are other things
we should be thinking about.

Maybe it’s the bowls themselves

that are also helping to determine
the outcome in the story,

what is just right.

I could talk to you about a lot
of different characteristics

of these three planets

that may influence habitability,

but for selfish reasons related
to my own research

and the fact that I’m standing up here
holding the clicker and you’re not –

(Laughter)

I would like to talk
for just a minute or two

about magnetic fields.

Earth has one; Venus and Mars do not.

Magnetic fields are generated
in the deep interior of a planet

by electrically conducting
churning fluid material

that creates this big old magnetic field
that surrounds Earth.

If you have a compass,
you know which way north is.

Venus and Mars don’t have that.

If you have a compass on Venus and Mars,

congratulations, you’re lost.

(Laughter)

Does this influence habitability?

Well, how might it?

Many scientists think
that a magnetic field of a planet

serves as a shield for the atmosphere,

deflecting solar wind particles
around the planet

in a bit of a force field-type effect

having to do with electric charge
of those particles.

I like to think of it instead
as a salad bar sneeze guard for planets.

(Laughter)

And yes, my colleagues
who watch this later will realize

this is the first time in the history
of our community

that the solar wind has been
equated with mucus.

(Laughter)

OK, so the effect, then, is that Earth
may have been protected

for billions of years,

because we’ve had a magnetic field.

Atmosphere hasn’t been able to escape.

Mars, on the other hand,
has been unprotected

because of its lack of magnetic field,

and over billions of years,

maybe enough atmosphere
has been stripped away

to account for a transition
from a habitable planet

to the planet that we see today.

Other scientists think
that magnetic fields

may act more like the sails on a ship,

enabling the planet to interact
with more energy from the solar wind

than the planet would have been able
to interact with by itself.

The sails may gather energy
from the solar wind.

The magnetic field may gather
energy from the solar wind

that allows even more
atmospheric escape to happen.

It’s an idea that has to be tested,

but the effect and how it works

seems apparent.

That’s because we know

energy from the solar wind
is being deposited into our atmosphere

here on Earth.

That energy is conducted
along magnetic field lines

down into the polar regions,

resulting in incredibly beautiful aurora.

If you’ve ever experienced them,
it’s magnificent.

We know the energy is getting in.

We’re trying to measure
how many particles are getting out

and if the magnetic field
is influencing this in any way.

So I’ve posed a problem for you here,

but I don’t have a solution yet.

We don’t have a solution.

But we’re working on it.
How are we working on it?

Well, we’ve sent spacecraft
to all three planets.

Some of them are orbiting now,

including the MAVEN spacecraft
which is currently orbiting Mars,

which I’m involved with
and which is led here,

out of the University of Colorado.

It’s designed to measure
atmospheric escape.

We have similar measurements
from Venus and Earth.

Once we have all our measurements,

we can combine all these together,
and we can understand

how all three planets interact
with their space environment,

with the surroundings.

And we can decide whether magnetic fields
are important for habitability

or not.

Once we have that answer,
why should you care?

I mean, I care deeply …

And financially as well, but deeply.

(Laughter)

First of all, an answer to this question

will teach us more
about these three planets,

Venus, Earth and Mars,

not only about how they interact
with their environment today,

but how they were billions of years ago,

whether they were habitable
long ago or not.

It will teach us about atmospheres

that surround us and that are close.

But moreover, what we learn
from these planets

can be applied to atmospheres everywhere,

including planets that we’re now
observing around other stars.

For example, the Kepler spacecraft,

which is built and controlled
here in Boulder,

has been observing
a postage stamp-sized region of the sky

for a couple years now,

and it’s found thousands of planets –

in one postage stamp-sized
region of the sky

that we don’t think is any different
from any other part of the sky.

We’ve gone, in 20 years,

from knowing of zero planets
outside of our solar system,

to now having so many,

that we don’t know
which ones to investigate first.

Any lever will help.

In fact, based on observations
that Kepler’s taken

and other similar observations,

we now believe that,

of the 200 billion stars
in the Milky Way galaxy alone,

on average, every star
has at least one planet.

In addition to that,

estimates suggest there are somewhere
between 40 billion and 100 billion

of those planets
that we would define as habitable

in just our galaxy.

We have the observations of those planets,

but we just don’t know
which ones are habitable yet.

It’s a little bit like
being trapped on a red spot –

(Laughter)

on a stage

and knowing that there are
other worlds out there

and desperately wanting to know
more about them,

wanting to interrogate them and find out
if maybe just one or two of them

are a little bit like you.

You can’t do that.
You can’t go there, not yet.

And so you have to use the tools
that you’ve developed around you

for Venus, Earth and Mars,

and you have to apply them
to these other situations,

and hope that you’re making
reasonable inferences from the data,

and that you’re going to be able
to determine the best candidates

for habitable planets,
and those that are not.

In the end, and for now, at least,

this is our red spot, right here.

This is the only planet
that we know of that’s habitable,

although very soon we may
come to know of more.

But for now, this is
the only habitable planet,

and this is our red spot.

I’m really glad we’re here.

Thanks.

(Applause)

我真的很高兴来到这里。

我很高兴你在这里,

因为那会有点奇怪。

我很高兴我们都在这里。

“这里”不是指这里。

或者在这里。

但在这儿。

我是说地球。

我说的“我们”不是指
这个礼堂里的我们,

而是生命,

地球上的所有生命——

(笑声)

从复杂到单细胞,

从霉菌到蘑菇

再到飞熊。

(笑声

) 有趣的是,

地球是
我们所知道的唯一有生命的地方——

870 万种。

我们看过其他地方,

也许没有
我们应该或可以的那么努力,

但我们看过但没有找到;

地球是
我们所知道的唯一有生命的地方。

地球很特别吗?

这是一个我从小
就想知道答案的问题

,我怀疑
这个礼堂中 80% 的人

都有同样的想法
,也想知道答案。

要了解是否
有任何行星——

在我们的太阳系或更远的地方

——可以支持生命

,第一步是了解
这里的生命需要什么。

事实证明,在所有这
870 万个物种中,

生命只需要三样东西。

一方面,
地球上的所有生命都需要能量。

像我们这样的复杂生命
从太阳中获取能量,

但地下深处的生命
可以

从化学反应等事物中获取能量。

在所有星球上都有许多不同的能源可供使用。

另一方面,

所有生命都需要食物或营养。

这似乎是一项艰巨的任务,
尤其是如果您想要多汁的番茄。

(笑声)

然而,地球上的所有生命

都只从六种化学元素中获取营养,

而这些元素可以
在我们太阳系的任何行星体上找到

所以这
把中间的东西作为高杆

,最难实现的东西。

不是驼鹿,而是水。

(笑声)

虽然驼鹿会很酷。

(笑声

) 不是冷冻水,也不
是气态水,而是液态水。

这就是生命
需要生存的东西,所有的生命。

许多太阳系天体
没有液态水

,所以我们不看那里。

其他太阳系天体
可能拥有丰富的液态水,

甚至比地球还多,

但它被困在冰壳之下

,因此很难
进入,很难到达,

甚至很难发现那里
是否有生命。

所以这留下了
一些我们应该考虑的机构。

因此,让我们
为自己简化问题。

让我们只考虑
行星表面的液态水。

在我们的太阳系中,只有三个天体需要考虑,

关于行星表面的液态水

,按照与太阳的距离排列,分别
是:金星、地球和火星。

你想要有一个气氛
让水变成液体。

你必须非常
小心这种气氛。

你不能有太多的大气层,
太厚或太温暖的大气层,

因为那样你最终会
像金星一样太热

,你不能有液态水。

但如果你的大气层
太少,太薄太冷,

你最终会像火星一样,太冷。

所以金星太热,火星太冷

,地球正好。

你可以看看我身后的这些图像
,你可以自动看到我们太阳系

中生命可以生存的地方

这是一个金发姑娘类型的问题

,它是如此简单
,以至于一个孩子都能理解。

然而,

我想提醒你关于

金发姑娘故事
中的两件事,我们可能不会经常想到,

但我认为这与这里非常相关。

第一:

如果

金发姑娘走进房间时熊妈妈的碗太冷了,

这是否意味着它一直都太冷了?

或者它可能
在其他时间刚刚好?

当金发姑娘走进房间时,
决定

了我们在故事中得到的答案。

行星也是如此。

它们不是静态的东西。 他们改变。

它们各不相同。 他们进化。

大气也是如此。

所以让我给你举个例子。

这是我最喜欢
的火星照片之一。

这不是最高分辨率的
图像,不是最性感的图像,

也不是最新的

图像,但它是一张显示河床
切入地球表面的图像;

由流动的液态水雕刻而成的河床;

需要数百年或数千年
或数万年才能形成的河床。

这不可能在今天的火星上发生。

今天火星的大气层
太薄太冷

,水不能稳定地变成液体。

这张图片告诉你
火星的气氛发生了变化,

而且发生了很大的变化。

它从
我们定义为宜居的状态发生了变化,

因为生命的三个要求
很久以前就存在了。

让水
在地表变成液态的大气去哪儿了?

嗯,一个想法是它逃到
了太空。

大气中的粒子
获得了足够的能量来

摆脱地球的引力,

逃到太空中,再也不会回来了。

所有有大气层的物体都会发生这种情况

彗星的尾巴

是令人难以置信的明显
的大气逃逸提醒。

但是金星也有一种
会随着时间逃逸的大气层

,火星和地球也是如此。

这只是程度
和规模的问题。

所以我们想弄清楚
随着时间的推移有多少逃逸,

这样我们就可以解释这种转变。

大气如何
获得能量以进行逃生?

粒子如何获得
足够的能量逃逸?

有两种方法,如果我们
要减少一点。

第一,阳光。

太阳发出的光可以
被大气粒子吸收

并加热粒子。

是的,我在跳舞,但是他们——

(笑声)

天哪,甚至在我的婚礼上也没有。

(笑声)

他们获得足够的能量
来逃离

地球并摆脱地球的引力,
仅仅通过变暖。

他们获得能量的第二种方式
是来自太阳风。

这些是
从太阳表面喷出的粒子、质量、物质

,它们

以每秒 400 公里的

速度在太阳系中尖叫,有时在太阳风暴期间更快

,它们
穿过行星际空间

飞向行星及其大气层,

它们也可能

为大气粒子
的逃逸提供能量。

这是我感兴趣的事情,

因为它与可居住性有关。

我提到
关于金发姑娘的故事有两

件事我想引起你的注意
并提醒你

,第二
件事更微妙一些。

如果熊爸爸的碗太热

,熊妈妈的碗太冷,我们跟风,

熊宝宝的碗不应该

更冷吗?

这件你一辈子都接受的东西

,再稍微想一想,
可能就没有那么简单了。

当然,行星
与太阳的距离决定了它的温度。

这必须发挥可居住性。

但也许还有其他事情
我们应该考虑。

也许是碗

本身也有助于确定
故事的结果,

什么是对的。

我可以和你谈谈

这三个行星

的许多不同特征可能会影响可居住性,

但出于
与我自己的

研究相关的自私原因,以及我站在这里
拿着答题器而你不是——

( 笑声)

我想
谈一两分钟

关于磁场的事情。

地球有一个; 金星和火星没有。

磁场是通过导电的流体材料
在行星的深处产生的,这些

流体材料

产生
了环绕地球的古老磁场。

如果你有指南针,
你就知道北边的方向。

金星和火星没有。

如果你在金星和火星上有指南针,

恭喜你,你迷路了。

(笑声)

这会影响可居住性吗?

嗯,怎么可能?

许多科学家认为
,行星的磁场

可以作为大气层的屏障,

使太阳风粒子
在行星周围偏转

,产生一种与这些粒子的电荷有关的力场效应

我喜欢把它想象
成一个沙拉吧打喷嚏保护行星。

(笑声

) 是的,我
后来看到这个的同事会意识到

这是我们社区历史上第一次

将太阳风
等同于粘液。

(笑声)

好的,那么结果就是地球
可能已经被保护

了数十亿年,

因为我们有一个磁场。

气氛已经逃不掉了。

另一方面,由于缺乏磁场,火星
一直没有受到保护

而且数十亿年来,

可能已经剥离了足够多的大气层

来解释从

宜居行星到我们今天看到的行星的转变。

其他科学家认为
,磁场的

作用可能更像是一艘船的帆,

使地球能够
与来自太阳风的能量相互作用,而

不是地球本身能够
与之相互作用。

帆可以
从太阳风中收集能量。

磁场可能会
从太阳风中收集能量,

从而允许更多的
大气逃逸发生。

这是一个必须经过测试的想法,

但效果及其工作方式

似乎很明显。

那是因为我们知道

来自太阳风的能量
正在地球上的大气层中沉积

这种能量
沿着磁场线

向下传导到极地地区,

从而产生令人难以置信的美丽极光。

如果你曾经体验过它们,
那真是太棒了。

我们知道能量正在进入。

我们正在尝试测量有
多少粒子正在离开,

以及磁场
是否以任何方式对其产生影响。

所以我在这里给你提出了一个问题,

但我还没有解决方案。

我们没有解决方案。

但我们正在努力。
我们是如何工作的?

好吧,我们已经
向所有三个行星发送了宇宙飞船。

它们中的一些现在正在绕轨道运行,

包括
目前正在绕火星运行的 MAVEN 航天器

,我参与其中
,它在

科罗拉多大学之外被带到这里。

它旨在测量
大气逃逸。

我们有
来自金星和地球的类似测量结果。

一旦我们完成了所有测量,

我们就可以将所有这些结合在一起
,我们就可以

了解这三个行星如何
与它们的太空环境

以及周围环境相互作用。

我们可以决定磁场
对可居住性是否重要

一旦我们有了这个答案,
你为什么要关心?

我的意思是,我非常关心

……在经济上也是如此,但非常关心。

(笑声)

首先,这个问题的答案

会告诉我们更多
关于金星、地球和火星这三颗行星的知识,

不仅是关于它们如何
与今天的环境相互作用,

还有它们在数十亿年前是怎样的,它们

是否是
很久以前是否适合居住。

它将教会我们关于

我们周围和接近的气氛。

但此外,我们
从这些行星中学到的东西

可以应用于任何地方的大气层,

包括我们现在正在
围绕其他恒星观测的行星。

例如,在博尔德

这里建造和控制的开普勒宇宙飞船

已经观察
了一个邮票大小的天空区域

几年了

,它发现了数千颗行星——

在一个邮票大小的
区域

我们认为
天空与天空的任何其他部分没有任何不同。

20 年来,我们

从只知道太阳系外的零行星

到现在拥有如此多的行星,

以至于我们不知道
首先要调查哪些行星。

任何杠杆都会有所帮助。

事实上,根据
开普勒的观测

和其他类似的观测,

我们现在认为,仅在银河系

的 2000 亿颗恒星

,平均每颗恒星
都至少有一颗行星。

除此之外,

估计表明在我们的银河系中,我们定义为宜居的行星中有
400 亿到 1000 亿

我们对这些行星进行了观测,

但我们只是不知道
哪些行星适合居住。

这有点像
被困在一个红点上——

(笑声)

在舞台上

,知道那里还有
其他世界

,拼命想了解
更多关于它们的信息,

想审问它们,看看
是否只有一两个 他们

中的一些人有点像你。

你不能那样做。
你不能去那里,现在还不行。

所以你必须使用
你周围

为金星、地球和火星开发的工具

,你必须将它们应用
到其他情况,

并希望你
从数据中做出合理的推论,

并且你' 重新将
能够确定宜居行星的最佳候选

者,
以及那些不宜居的行星。

最后,至少现在,

这是我们的红点,就在这里。

这是
我们所知道的唯一可居住的行星,

尽管很快我们可能
会知道更多。

但就目前而言,这
是唯一可居住的星球

,也是我们的红点。

我真的很高兴我们在这里。

谢谢。

(掌声)