Your body was forged in the spectacular death of stars Enrico RamirezRuiz

Translator: Ivana Korom
Reviewer: Krystian Aparta

We are all atomically connected.

Fundamentally, universally.

But what does that mean?

I’m an astrophysicist, and as such,

it is my responsibility to trace
the cosmic history

of every single one of your atoms.

In fact, I would say

that one of the greatest achievements
of modern astronomy

is the understanding of how our atoms
were actually put together.

While hydrogen and helium were made

during the first two minutes
of the big bang,

the origin of heavy elements,

such as the iron in your blood,
the oxygen we’re breathing,

the silicone in your computers,

lies in the life cycle of stars.

Nuclear reactions take lighter elements
and transform them into heavier ones,

and that causes stars to shine

and ultimately explode,

therefore enriching the universe
with these heavy elements.

So without stellar death

there would be no oxygen

or other elements
heavier than hydrogen and helium,

and therefore, there would be no life.

There are more atoms in our bodies

than stars in the universe.

And these atoms are extremely durable.

The origins of our atoms

can be traceable to stars
that manufactured them in their interiors

and exploded them
all across the Milky Way,

billions of years ago.

And I should know this,

because I am indeed a certified
stellar mortician.

(Laughter)

And today, I want to take you on a journey
that starts in a supernova explosion

and ends with the air
that we’re breathing right now.

So what is our body made of?

Ninety-six percent
consists of only four elements:

hydrogen, carbon, oxygen and nitrogen.

Now the main character
of this cosmic tale is oxygen.

Not only is the vast majority
of our bodies made of oxygen,

but oxygen is the one element
fighting to protect life on earth.

The vast majority of oxygen
in the universe

was indeed produced
over the entire history of the universe

in these supernova explosions.

These supernova explosions
signal the demise of very massive stars.

And for a brilliant month,

one supernova explosion
can be brighter than an entire galaxy

containing billions of stars.

That is truly remarkable.

That is because massive stars
burn brighter

and have a spectacular death,
compared to other stars.

Nuclear fusion is really
the lifeblood of all stars,

including the sun,

and as a result is the root source
of all the energy on earth.

You can think of stars
as these fusion factories

which are powered
by smashing atoms together

in their hot and dense interiors.

Now, stars like our sun,

which are relatively small,

burn hydrogen into helium,

but heavier stars of about
eight times the mass of the sun

continue this burning cycle

even after they exhausted
their helium in their cores.

So at this point,

the massive star
is left with a carbon core,

which, as you know,
is the building block of life.

This carbon core continues to collapse

and as a result,
the temperature increases,

which allows further
nuclear reactions to take place,

and carbon then burns into oxygen,

into neon, silicon, sulphur

and ultimately iron.

And iron is the end.

Why?

Because iron is the most
bound nuclei in the universe,

which means that we cannot
extract energy by burning iron.

So when the entire core
of the massive star is made of iron,

it’s run out of fuel.

And that’s an incredibly
bad day for a star.

(Laughter)

Without fuel, it cannot generate heat,

and therefore gravity has won the battle.

The iron core has no other choice
but to collapse,

reaching incredibly high densities.

Think of 300 million tons

reduced to a space
the size of a sugar cube.

At these extreme high densities,
the core actually resists collapse,

and as a result,

all of this infalling material
bounces off the core.

And this dramatic bounce,

which happens in a fraction
of a second or so,

is responsible for ejecting
the rest of the star in all directions,

ultimately forming a supernova explosion.

So, sadly, from the perspective
of an astrophysicist,

the conditions in the centers
of these exploding stars

cannot be recreated in a laboratory.

(Laughter)

Now, thankfully for humanity,
we’re not able to do that.

(Laughter)

But what does that mean?

That means that as astrophysicists,

we have to rely on sophisticated
computer simulations

in order to understand
these complex phenomena.

These simulations can be used
to really understand how gas behaves

under such extreme conditions.

And can be used to answer
fundamental questions

like, “What ultimately disrupted
the massive star?”

“How is it that this implosion
can be reversed into an explosion?”

There’s a huge amount
of debate in the field,

but we all agree that neutrinos,

which are these elusive
elementary particles,

play a crucial role.

Yeah?

I’m about to show you
one of those simulations.

So neutrinos are produced in huge numbers
once the core collapses.

And in fact,

they are responsible for transferring
the energy in this core.

Like thermal radiation in a heater,

neutrinos pump energy into the core,

increasing the possibility
of disrupting the star.

In fact, for about a fraction of a second,

neutrinos pump so much energy

that the pressure increases high enough
that a shock wave is produced

and the shock wave
goes and disrupts the entire star.

And it is in that shock wave
where elements are produced.

So thank you, neutrinos.

(Laughter)

Supernovas shine bright,

and for a brief period of time,

they radiate more energy
than the sun will in its entire lifetime.

That point of light that you see there,

which was certainly not there before,

burns like a beacon,

clearly indicating the position
where the massive star has died.

In a galaxy like our own Milky Way,

we estimate that about
once every 50 years,

a massive star dies.

This implies that somewhere
in the universe,

there’s a supernova explosion
every second or so.

And thankfully for astronomers,

some of them are actually found
relatively close to earth.

Various civilizations
recorded these supernova explosions

long before the telescope was invented.

The most famous of all of them

is probably the supernova explosion
that gave rise to the Crab Nebula.

Yeah?

Korean and Chinese astronomers
recorded this supernova in 1054,

as did, almost certainly,
Native Americans.

This supernova happened
about 5,600 light-years away from earth.

And it was so incredibly bright

that astronomers could see it
during the day.

And it was visible to the naked eye
for about two years in the night sky.

Fast forward 1,000 years or so later,
and what do we see?

We see these filaments
that were blasted by the explosion,

moving at 300 miles per second.

These filaments are essential
for us to understand

how massive stars die.

The image that you see there

was assembled
by the Hubble Space Telescope

over a span of three months.

And it is incredibly important
to astronomers

because it ultimately carries
the chemical legacy

of the star that exploded.

The orange filaments that you see there
are the tattered remains of the star,

and are made primarily of hydrogen,

while the blue and red
filaments that you see

are the freshly synthesized oxygen.

So studying supernova remnants,
like the Crab Nebula,

allowed astronomers to firmly conclude

that the vast majority of oxygen on earth
was produced by supernova explosions

over the history of the universe.

And we can estimate

that in order to assemble
all the atoms of oxygen in our body,

it took on the order
of a 100 million supernova.

So every bit of you,
or at least the majority of it,

came from one of these
supernova explosions.

So now you may be wondering,

how is it that these atoms

that were generated in such
extreme conditions

ultimately took residence in our body?

So I want you to follow
the thought experiment.

Imagine that we’re in the Milky Way,
and a supernova happens.

It blasted tons and tons of oxygen atoms

almost into empty space.

A few of them were able
to be assembled in a cloud.

Now, 4.5 billion years ago,

something unsettled that cloud
and caused it to collapse,

forming the sun in its center
and the solar system.

So the sun, the planets and life on earth

depend on this beautiful cycle

of stellar birth, stellar death
and stellar rebirth.

And this continues the recycling
of atoms in the universe.

And as a result, astronomy
and chemistry are intimately connected.

We are life forms that have evolved
to inhale the waste products of plants.

But now you know

that we also inhale the waste products
of supernova explosions.

(Laughter)

So take a moment, inhale.

An oxygen atom
has just gone into your body.

It is certain that that oxygen [atom]

remembers that it was
in the interior of a star

and it was probably manufactured
by a supernova explosion.

This atom may have traveled
the entire solar system

until it splashed on earth,

long before reaching you.

When we breathe,

we use hundreds of liters
of oxygen every day.

So I’m incredibly lucky to be standing
in front of this beautiful audience,

but I’m actually stealing
your oxygen atoms.

(Laughter)

And because I’m speaking to you,

I’m giving you some of them back,
that once resided in me.

So breathing, yeah,

participates in this
beautiful exchange of atoms.

And you can then ask,

“Well, how many atoms in our body
once belonged to Frida Kahlo?”

(Laughter)

About 100,000 of them.

100,000 more probably
belonged to Marie Curie,

100,000 more to Sally Ride,

or whoever you want to think of.

So breathing is not only filling our lungs
with cosmic history,

but with human history.

I would like to end my talk
by sharing a myth

that is very close to my heart.

A myth from the Chichimeca culture,

which is a very powerful
Mesoamerican culture.

And the Chichimecas believe

that our essence
was assembled in the heavens.

And on its journey towards us,

it actually fragmented
into tons of different pieces.

So my abuelo used to say,

“One of the reasons you feel incomplete

is because you are missing your pieces.”

(Laughter)

“But don’t be fooled by that.

You’ve been given an incredible
opportunity of growth.

Why?

Because it’s not like those pieces
were scattered on earth

and you have to go and pick them up.

No, those pieces fell into other people.

And only by sharing them
you will become more complete.

Yes, during your life,

there’s going to be individuals
that have these huge pieces

that make you feel whole.

But in your quest of being complete,

you have to treasure and share
every single one of those pieces.”

Sounds a lot like the story
of oxygen to me.

(Laughter)

Which started in the heavens
in a supernova explosion,

and continues today,

within the confines of our humanity.

Our atoms in our body
have embarked on an epic odyssey,

with time spans from billions of years
to mere centuries,

all leading to you,

all of you,

witnesses of the universe.

Thank you.

(Applause)

译者:Ivana Korom
审稿人:Krystian Aparta

我们都是原子连接的。

从根本上说,普遍。

但是,这是什么意思?

我是一名天体物理学家,因此

,我有责任追踪

你们每一个原子的宇宙历史。

事实上,我

想说现代天文学最伟大的成就
之一

就是了解我们的原子实际上是如何
组合在一起的。

虽然氢和氦是

在大爆炸的前两分钟制造
的,

但重元素的起源,

如血液中的铁、
我们呼吸的氧气、

计算机中的硅树脂,都存在

于恒星的生命周期中 .

核反应将较轻的
元素转化为较重的元素,

从而使恒星发光

并最终爆炸,

从而使
这些重元素丰富了宇宙。

因此,如果没有恒星死亡

,就不会有氧

或其他
比氢和氦重的元素

,因此也就没有生命。

我们体内的原子

比宇宙中的恒星还要多。

这些原子非常耐用。

我们原子的起源

可以追溯到数十亿年前
在其内部制造并在

整个银河系中爆炸的恒星

我应该知道这一点,

因为我确实是一名经过认证的
恒星殡仪师。

(笑声

) 今天,我想带你们踏上一段旅程
,从超新星爆炸开始,

到我们现在呼吸的空气结束。

那么我们的身体是由什么构成的呢?

百分之九十六
只由四种元素组成:

氢、碳、氧和氮。

现在
这个宇宙故事的主角是氧气。

不仅
我们的大部分身体由氧气组成,

而且
氧气是保护地球生命的唯一元素。

在宇宙

的整个历史中

,这些超新星爆炸确实产生了宇宙中绝大多数的氧气。

这些超新星爆炸
标志着非常大质量恒星的消亡。

在辉煌的一个月里,

一次超新星爆炸
可能比

包含数十亿颗恒星的整个星系还要亮。

这真是了不起。

这是因为与其他恒星相比,大质量恒星
燃烧得更亮

,死亡更壮观

核聚变确实
是包括太阳在内的所有恒星的命脉

,因此是
地球上所有能量的根源。

你可以把恒星想象
成这些聚变工厂

,它们的动力
来自

于在它们炽热而致密的内部将原子粉碎在一起。

现在,像我们的太阳

这样相对较小的恒星

将氢燃烧成氦,


质量约为太阳八倍的较重恒星

即使在耗尽
核心中的氦之后也会继续这种燃烧循环。

所以在这一点上,

这颗大质量
恒星留下了一个碳核心

,正如你所知,它
是生命的基石。

这个碳核继续坍塌


结果温度升高,

这使得进一步的
核反应发生,

然后碳燃烧成氧气、

氖、硅、硫

,最终变成铁。

铁是终点。

为什么?

因为铁
是宇宙中束缚最多的原子核,

这意味着我们不能通过
燃烧铁来提取能量。

因此,当
这颗大质量恒星的整个核心由铁构成时,

它的燃料就会耗尽。


对明星来说是非常糟糕的一天。

(笑声)

没有燃料,它不能产生热量

,因此重力赢得了战斗。

铁芯
别无选择,只能坍塌,

达到难以置信的高密度。

想想 3 亿吨

减少到
方糖大小的空间。

在这些极高的密度下
,核心实际上会抵抗坍塌

,因此,

所有这些下落的材料都会
从核心反弹。

而这种戏剧性的反弹

,发生在几分
之一秒左右,

负责将
恒星的其余部分向各个方向喷射,

最终形成超新星爆炸。

因此,可悲的是,从
天体物理学家的角度来看,

这些爆炸恒星中心的条件

无法在实验室中重现。

(笑声)

现在,感谢人类,
我们无法做到这一点。

(笑声)

但这意味着什么?

这意味着作为天体物理学家,

我们必须依靠复杂的
计算机

模拟来理解
这些复杂的现象。

这些模拟可
用于真正了解气体

在如此极端条件下的行为方式。

并且可以用来回答

诸如“最终是什么破坏
了大质量恒星?”之类的基本问题。

“这内爆
怎么能逆转成爆炸?”

该领域存在大量争论

,但我们都同意

这些难以捉摸的
基本粒子中微子

起着至关重要的作用。

是的?

我将向您展示
其中一个模拟。

因此,一旦核心坍塌,就会大量产生中微子

事实上,

他们负责转移
这个核心中的能量。

就像加热器中的热辐射一样,

中微子将能量泵入核心,

增加
了破坏恒星的可能性。

事实上,在大约几分之一秒的时间里,

中微子泵送了如此多的能量

,以至于压力升高到
足以产生

冲击波并且冲击波传播
并破坏整个恒星。

正是在冲击波
中产生了元素。

所以谢谢你,中微子。

(笑声)

超新星闪耀着光芒

,在短时间内,

它们辐射出的能量
比太阳在其整个生命周期中的能量还要多。

你在那里看到的那个光点

,以前肯定不存在,

像灯塔一样燃烧,

清楚地表明
大质量恒星死亡的位置。

在像我们自己的银河系这样的星系中,

我们估计大约
每 50 年就会

有一颗大质量恒星死亡。

这意味着
在宇宙的某个地方,

每隔一秒左右就会发生一次超新星爆炸。

幸运的是天文学家,

其中一些实际上是在离地球相对较近的地方被发现的
。 早在望远镜发明之前,

各种文明就
记录了这些超新星爆炸

其中最著名

的可能
是引发蟹状星云的超新星爆炸。

是的?

韩国和中国的天文学家
在 1054 年记录了这颗超新星

,几乎可以肯定,
美洲原住民也是如此。

这颗超新星发生
在距离地球约 5,600 光年的地方。

它是如此的明亮

,以至于天文学家在白天都能看到它


在夜空中肉眼可见大约两年。

快进一千年左右
,我们看到了什么?

我们看到
这些被爆炸炸开的细丝

以每秒 300 英里的速度移动。

这些细丝
对于我们

了解大质量恒星如何死亡至关重要。

您在那里看到的图像是

由哈勃太空望远镜

在三个月内组装而成的。

这对天文学家来说非常重要

因为它最终承载

了爆炸恒星的化学遗产。

你看到的橙色
细丝是恒星的残骸

,主要由氢组成,

而你看到的蓝色和红色
细丝

是新合成的氧。

因此,研究
蟹状星云等超新星遗迹,

让天文学家能够坚定地得出

结论,地球上的绝大多数氧气
是由

宇宙历史上的超新星爆炸产生的。

我们可以估计

,为了将
我们体内所有的氧原子组装起来,


需要一颗 1 亿颗超新星的数量级。

所以你们每一个人,
或者至少大部分,

都来自这些
超新星爆炸中的一次。

所以现在你可能想知道,

这些极端条件下产生的原子是如何

最终进入我们体内的?

所以我希望你
跟随思想实验。

想象一下,我们在银河系中
,发生了超新星。

它几乎将成吨成吨的氧原子

轰入空旷的空间。

其中一些
能够聚集在云中。

现在,在 45 亿年前,有

什么东西使这片云变得不稳定
并导致它坍塌,

在它的中心
和太阳系中形成了太阳。

所以太阳、行星和地球

上的生命都依赖于

恒星诞生、恒星死亡
和恒星重生的美丽循环。

这继续循环
宇宙中的原子。

因此,天文学
和化学密切相关。

我们是进化
到吸入植物废物的生命形式。

但现在你

知道我们也吸入
超新星爆炸的废物。

(笑声)

所以花点时间,吸气。

一个氧原子
刚刚进入你的身体。

可以肯定的是,氧[原子]

记得它
位于恒星内部,

并且可能是
由超新星爆炸产生的。

这个原子可能已经穿越
了整个太阳系,

直到它溅到地球上,

早在到达你之前。

当我们呼吸时,

我们每天使用数百
升氧气。

所以我非常幸运能
站在这些美丽的观众面前,

但我实际上是在偷
你的氧原子。

(笑声

) 因为我在和你说话,

所以我把它们中的一些还给你,
它们曾经存在于我体内。

所以呼吸,是的,

参与了这种
美妙的原子交换。

然后你可以问,

“嗯,我们身体里有多少原子
曾经属于弗里达·卡罗?”

(笑声) 其中

大约有 100,000 个。

100,000 多可能
属于 Marie Curie,

多 100,000 属于 Sally Ride,

或者您想知道的任何人。

因此,呼吸不仅让我们的肺充满了
宇宙的历史,

也充满了人类的历史。

我想
通过分享一个

非常接近我内心的神话来结束我的演讲。

来自奇奇梅卡文化的神话,

这是一种非常强大的
中美洲文化。

Chichimecas

相信我们的本质
是在天上聚集的。

在它走向我们的过程中,

它实际上分裂
成无数不同的部分。

所以我的 abuelo 曾经说过,

“你觉得不完整的原因之一

是因为你错过了你的作品。”

(笑声)

“但是不要被这个骗了。

你得到了一个难以置信
的成长机会。

为什么?

因为那些碎片
不是散落在地球上的

,你必须去捡它们。

不,那些碎片 落入他人

。只有分享它们,
你才会变得更完整。

是的,在你的一生中

,会
有人拥有

这些让你感到完整的巨大碎片。

但在你追求完整的过程中,

你必须珍惜 并分享
每一件作品。”

对我来说听起来很像氧气的故事。

(笑声)

它从天上
的超新星爆炸开始

,一直持续到今天,

在我们人类的范围内。

我们体内的原子
开始了一场史诗般的冒险之旅

,时间跨度从数十亿年
到仅仅几个世纪,

都指向你们,你们

所有人,

宇宙的见证者。

谢谢你。

(掌声)