How AI is making it easier to diagnose disease Pratik Shah

Computer algorithms today
are performing incredible tasks

with high accuracies, at a massive scale,
using human-like intelligence.

And this intelligence of computers
is often referred to as AI

or artificial intelligence.

AI is poised to make an incredible impact
on our lives in the future.

Today, however,
we still face massive challenges

in detecting and diagnosing
several life-threatening illnesses,

such as infectious diseases and cancer.

Thousands of patients every year

lose their lives
due to liver and oral cancer.

Our best way to help these patients

is to perform early detection
and diagnoses of these diseases.

So how do we detect these diseases today,
and can artificial intelligence help?

In patients who, unfortunately,
are suspected of these diseases,

an expert physician first orders

very expensive
medical imaging technologies

such as fluorescent imaging,
CTs, MRIs, to be performed.

Once those images are collected,

another expert physician then diagnoses
those images and talks to the patient.

As you can see, this is
a very resource-intensive process,

requiring both expert physicians,
expensive medical imaging technologies,

and is not considered practical
for the developing world.

And in fact, in many
industrialized nations, as well.

So, can we solve this problem
using artificial intelligence?

Today, if I were to use traditional
artificial intelligence architectures

to solve this problem,

I would require 10,000 –

I repeat, on an order of 10,000
of these very expensive medical images

first to be generated.

After that, I would then go
to an expert physician,

who would then analyze
those images for me.

And using those two pieces of information,

I can train a standard deep neural network
or a deep learning network

to provide patient’s diagnosis.

Similar to the first approach,

traditional artificial
intelligence approaches

suffer from the same problem.

Large amounts of data, expert physicians
and expert medical imaging technologies.

So, can we invent more scalable, effective

and more valuable artificial
intelligence architectures

to solve these very important
problems facing us today?

And this is exactly
what my group at MIT Media Lab does.

We have invented a variety
of unorthodox AI architectures

to solve some of the most important
challenges facing us today

in medical imaging and clinical trials.

In the example I shared
with you today, we had two goals.

Our first goal was to reduce
the number of images

required to train
artificial intelligence algorithms.

Our second goal – we were more ambitious,

we wanted to reduce the use
of expensive medical imaging technologies

to screen patients.

So how did we do it?

For our first goal,

instead of starting
with tens and thousands

of these very expensive medical images,
like traditional AI,

we started with a single medical image.

From this image, my team and I
figured out a very clever way

to extract billions
of information packets.

These information packets
included colors, pixels, geometry

and rendering of the disease
on the medical image.

In a sense, we converted one image
into billions of training data points,

massively reducing the amount of data
needed for training.

For our second goal,

to reduce the use of expensive medical
imaging technologies to screen patients,

we started with a standard,
white light photograph,

acquired either from a DSLR camera
or a mobile phone, for the patient.

Then remember those
billions of information packets?

We overlaid those from
the medical image onto this image,

creating something
that we call a composite image.

Much to our surprise,
we only required 50 –

I repeat, only 50 –

of these composite images to train
our algorithms to high efficiencies.

To summarize our approach,

instead of using 10,000
very expensive medical images,

we can now train the AI algorithms
in an unorthodox way,

using only 50 of these high-resolution,
but standard photographs,

acquired from DSLR cameras
and mobile phones,

and provide diagnosis.

More importantly,

our algorithms can accept,
in the future and even right now,

some very simple, white light
photographs from the patient,

instead of expensive
medical imaging technologies.

I believe that we are poised
to enter an era

where artificial intelligence

is going to make an incredible
impact on our future.

And I think that thinking
about traditional AI,

which is data-rich but application-poor,

we should also continue thinking

about unorthodox artificial
intelligence architectures,

which can accept small amounts of data

and solve some of the most important
problems facing us today,

especially in health care.

Thank you very much.

(Applause)

今天的计算机算法
正在使用类人智能以高精度、大规模执行令人难以置信的任务

计算机的这种智能
通常被称为人工智能

或人工智能。

人工智能有望
在未来对我们的生活产生令人难以置信的影响。

然而,今天,
我们

在检测和诊断
几种危及生命的疾病(

如传染病和癌症)方面仍面临巨大挑战。

每年有数千名患者

因肝癌和口腔癌而丧生。

我们帮助这些患者的最佳方法

是对这些疾病进行早期检测
和诊断。

那么我们今天如何检测这些疾病
,人工智能可以提供帮助吗?

不幸的是,
对于怀疑患有这些疾病的患者

,专家医师首先会要求执行

非常昂贵的
医学成像技术,

例如荧光成像、
CT、MRI。

一旦收集到这些图像,

另一位专家医生就会诊断
这些图像并与患者交谈。

如您所见,这是
一个资源密集型过程,

需要专家医师和
昂贵的医学成像技术,

并且被认为
对发展中国家不实用。

事实上,在许多
工业化国家也是如此。

那么,我们能用人工智能解决这个问题
吗?

今天,如果我要使用传统的
人工智能架构

来解决这个问题,

我将需要 10,000 -

我重复一遍,首先生成
10,000 这些非常昂贵的医学图像

之后,我会
去找一位专家医生,

然后他会
为我分析这些图像。

使用这两条信息,

我可以训练一个标准的深度神经网络
或深度学习网络

来提供患者的诊断。

与第一种方法类似,

传统的
人工智能方法也

存在同样的问题。

海量数据、专业医师
和专业医学影像技术。

那么,我们能否发明更多可扩展、更有效

和更有价值的
人工智能架构

来解决
我们今天面临的这些非常重要的问题?


正是我在 MIT 媒体实验室的团队所做的。

我们发明了
各种非正统的人工智能架构

来解决
我们今天

在医学成像和临床试验中面临的一些最重要的挑战。

在我今天与您分享的示例中
,我们有两个目标。

我们的第一个目标是减少

训练
人工智能算法所需的图像数量。

我们的第二个目标——我们更加雄心勃勃,

我们希望减少
使用昂贵的医学成像技术

来筛查患者。

那么我们是怎么做到的呢?

对于我们的第一个目标,我们

没有像传统 AI 那样
从成千上万张

非常昂贵的医学图像

开始,而是从单个医学图像开始。

从这张图片中,我和我的团队
想出了一个非常聪明的方法

来提取数十亿
的信息包。

这些信息包
包括医学图像上疾病的颜色、像素、几何形状

和渲染

从某种意义上说,我们将一张图像
转换为数十亿个训练数据点,

大大减少了训练所需的数据量

对于我们的第二个目标,

为了减少使用昂贵的医学
成像技术来筛查患者,

我们从一张标准的
白光照片开始,该照片

是从数码单反相机
或手机获取的,用于患者。

那么还记得那些
数十亿的信息包吗?

我们
将医学图像中的图像叠加到这张图像上,

创建
了我们称之为合成图像的东西。

令我们惊讶的是,
我们只需要 50 个——

我再说一遍,只有 50 个

——这些合成图像来训练
我们的算法以提高效率。

总结我们的方法,

不是使用 10,000 张
非常昂贵的医学图像,

我们现在可以
以一种非正统的方式训练 AI 算法,

只使用从 DSLR 相机和手机获取的这些高分辨率
但标准的照片中的 50 张

并提供诊断 .

更重要的是,

我们的算法可以
在未来甚至现在接受来自患者的

一些非常简单的白光
照片,

而不是昂贵的
医学成像技术。

我相信我们已经准备
好进入一个

人工智能将对我们的未来产生不可思议的
影响的时代。

而且我认为考虑

数据丰富但应用贫乏的传统人工智能,

我们还应该继续

思考非正统的
人工智能架构,

它可以接受少量数据

并解决
我们今天面临的一些最重要的问题,

尤其是 在医疗保健中。

非常感谢你。

(掌声)