Why cant you divide by zero TEDEd

In the world of math,

many strange results are possible
when we change the rules.

But there’s one rule that most of us
have been warned not to break:

don’t divide by zero.

How can the simple combination
of an everyday number

and a basic operation
cause such problems?

Normally, dividing by smaller
and smaller numbers

gives you bigger and bigger answers.

Ten divided by two is five,

by one is ten,

by one-millionth is 10 million,

and so on.

So it seems like if you divide by numbers

that keep shrinking
all the way down to zero,

the answer will grow
to the largest thing possible.

Then, isn’t the answer to 10
divided by zero actually infinity?

That may sound plausible.

But all we really know is
that if we divide 10

by a number that tends towards zero,

the answer tends towards infinity.

And that’s not the same thing as
saying that 10 divided by zero

is equal to infinity.

Why not?

Well, let’s take a closer look
at what division really means.

Ten divided by two could mean,

“How many times must
we add two together to make 10,”

or, “two times what equals 10?”

Dividing by a number is essentially
the reverse of multiplying by it,

in the following way:

if we multiply any number
by a given number x,

we can ask if there’s a new number
we can multiply by afterwards

to get back to where we started.

If there is, the new number is called
the multiplicative inverse of x.

For example, if you multiply
three by two to get six,

you can then multiply
by one-half to get back to three.

So the multiplicative inverse
of two is one-half,

and the multiplicative inverse
of 10 is one-tenth.

As you might notice, the product of any
number and its multiplicative inverse

is always one.

If we want to divide by zero,

we need to find
its multiplicative inverse,

which should be one over zero.

This would have to be such a number that
multiplying it by zero would give one.

But because anything multiplied
by zero is still zero,

such a number is impossible,

so zero has no multiplicative inverse.

Does that really settle things, though?

After all, mathematicians
have broken rules before.

For example, for a long time,

there was no such thing as taking
the square root of negative numbers.

But then mathematicians defined
the square root of negative one

as a new number called i,

opening up a whole new
mathematical world of complex numbers.

So if they can do that,

couldn’t we just make up a new rule,

say, that the symbol infinity
means one over zero,

and see what happens?

Let’s try it,

imagining we don’t know
anything about infinity already.

Based on the definition
of a multiplicative inverse,

zero times infinity must be equal to one.

That means zero times infinity plus
zero times infinity should equal two.

Now, by the distributive property,

the left side of the equation
can be rearranged

to zero plus zero times infinity.

And since zero plus zero
is definitely zero,

that reduces down to zero times infinity.

Unfortunately, we’ve already defined
this as equal to one,

while the other side of the equation
is still telling us it’s equal to two.

So, one equals two.

Oddly enough,
that’s not necessarily wrong;

it’s just not true
in our normal world of numbers.

There’s still a way it could
be mathematically valid,

if one, two, and every other number
were equal to zero.

But having infinity equal to zero

is ultimately not all that useful
to mathematicians, or anyone else.

There actually is something called
the Riemann sphere

that involves dividing by zero
by a different method,

but that’s a story for another day.

In the meantime, dividing by zero
in the most obvious way

doesn’t work out so great.

But that shouldn’t stop us
from living dangerously

and experimenting
with breaking mathematical rules

to see if we can invent
fun, new worlds to explore.

在数学世界中,当我们改变规则时

,可能会出现许多奇怪的结果

但是我们大多数人
都被警告过不要违反一条规则:

不要除以零。

一个日常数字

和一个基本操作的简单组合怎么会
导致这样的问题呢?

通常,除以
越来越小的数字

会给你越来越大的答案。

十除以二等于五,

除以一等于十

,百万分之一等于一千万,

以此类推。

所以看起来如果你除以

一直缩小到零的数字

,答案将增长
到尽可能大的数字。

那么,10 除以 0 的答案不就是
无穷大吗?

这听起来似乎很合理。

但我们真正知道的是
,如果我们将 10

除以一个趋于零的数字,

则答案趋向于无穷大。

这与
说 10 除以零

等于无穷大不同。

为什么不?

好吧,让我们仔细
看看除法的真正含义。

10 除以 2 可能意味着


我们必须将 2 相加多少次才能得到 10”,

或者“等于 10 的两倍?”

除以一个数字本质
上是乘以它的逆过程,

方式如下:

如果我们将任何数字
乘以给定的数字 x,

我们可以询问是否有一个新的
数字可以在之后乘以

回到我们开始的地方。

如果有,这个新数就称为
x 的乘法倒数。

例如,如果你将
三乘以二得到六,

然后你可以
乘以二分之一得到三。

所以二的乘法倒数
是一 -half,

而 10 的乘法逆元
是十分之一

。您可能注意到,任何
数与其乘法逆元的

乘积始终为 1。

如果我们想除以零,

我们需要找到
它的乘法逆元,

这应该 是一比零。

这必须是这样一个数字,
它乘以零就会得到一。

但是因为任何
乘以零仍然是零,所以

这样的数字是不可能的,

所以零没有乘法逆元。

这真的解决了问题吗 , 但是?

毕竟, 数学家
有 之前打破的规则。

例如,很长一段时间内,

都没有取
负数的平方根这回事。

但后来数学家将
负一的平方根定义

为一个名为 i 的新数字,

打开了一个全新
的复数数学世界。

所以如果他们能做到这一点,

我们难道不能制定一个新规则,

比如,符号无穷大
意味着一比零

,看看会发生什么?

让我们试一试,

想象我们
已经对无限一无所知。

根据
乘法逆的定义,

零乘以无穷大必须等于一。

这意味着零乘以无穷加
零乘以无穷应该等于二。

现在,通过分布性质,

等式的左边
可以重新

排列为零加上零乘以无穷大。

而且由于零加零
绝对是零,

因此减少到零乘以无穷大。

不幸的是,我们已经将
它定义为等于一,

而等式的另一边
仍然告诉我们它等于二。

所以,一等于二。

奇怪的是,
这不一定是错的。

在我们正常的数字世界中,这不是真的。

如果一个、两个和所有其他数字
都等于 0,那么它在数学上仍然是有效的。

但是,无穷大

等于零最终
对数学家或其他任何人都不是那么有用。

实际上有一种
叫做黎曼球面的东西

,它涉及
用不同的方法除以零,

但那是另一天的故事了。

与此同时,
以最明显的方式除以零

并不是那么好。

但这不应该阻止我们
危险地生活


尝试打破数学规则

,看看我们是否可以发明
有趣的新世界来探索。