Can we cure genetic diseases by rewriting DNA David R. Liu

The most important gift
your mother and father ever gave you

was the two sets
of three billion letters of DNA

that make up your genome.

But like anything
with three billion components,

that gift is fragile.

Sunlight, smoking, unhealthy eating,

even spontaneous mistakes
made by your cells,

all cause changes to your genome.

The most common kind of change in DNA

is the simple swap of one letter,
or base, such as C,

with a different letter,
such as T, G or A.

In any day, the cells in your body
will collectively accumulate

billions of these single-letter swaps,
which are also called “point mutations.”

Now, most of these
point mutations are harmless.

But every now and then,

a point mutation disrupts
an important capability in a cell

or causes a cell to misbehave
in harmful ways.

If that mutation were inherited
from your parents

or occurred early enough
in your development,

then the result would be
that many or all of your cells

contain this harmful mutation.

And then you would be one
of hundreds of millions of people

with a genetic disease,

such as sickle cell anemia or progeria

or muscular dystrophy
or Tay-Sachs disease.

Grievous genetic diseases
caused by point mutations

are especially frustrating,

because we often know
the exact single-letter change

that causes the disease
and, in theory, could cure the disease.

Millions suffer from sickle cell anemia

because they have
a single A to T point mutations

in both copies of their hemoglobin gene.

And children with progeria
are born with a T

at a single position in their genome

where you have a C,

with the devastating consequence
that these wonderful, bright kids

age very rapidly and pass away
by about age 14.

Throughout the history of medicine,

we have not had a way
to efficiently correct point mutations

in living systems,

to change that disease-causing
T back into a C.

Perhaps until now.

Because my laboratory recently succeeded
in developing such a capability,

which we call “base editing.”

The story of how we developed base editing

actually begins three billion years ago.

We think of bacteria
as sources of infection,

but bacteria themselves are also
prone to being infected,

in particular, by viruses.

So about three billion years ago,

bacteria evolved a defense mechanism
to fight viral infection.

That defense mechanism
is now better known as CRISPR.

And the warhead in CRISPR
is this purple protein

that acts like molecular
scissors to cut DNA,

breaking the double helix into two pieces.

If CRISPR couldn’t distinguish
between bacterial and viral DNA,

it wouldn’t be a very useful
defense system.

But the most amazing feature of CRISPR

is that the scissors can be
programmed to search for,

bind to and cut

only a specific DNA sequence.

So when a bacterium encounters
a virus for the first time,

it can store a small snippet
of that virus’s DNA

for use as a program
to direct the CRISPR scissors

to cut that viral DNA sequence
during a future infection.

Cutting a virus’s DNA messes up
the function of the cut viral gene,

and therefore disrupts
the virus’s life cycle.

Remarkable researchers including
Emmanuelle Charpentier, George Church,

Jennifer Doudna and Feng Zhang

showed six years ago how CRISPR scissors
could be programmed

to cut DNA sequences of our choosing,

including sequences in your genome,

instead of the viral DNA sequences
chosen by bacteria.

But the outcomes are actually similar.

Cutting a DNA sequence in your genome

also disrupts the function
of the cut gene, typically,

by causing the insertion and deletion
of random mixtures of DNA letters

at the cut site.

Now, disrupting genes can be very
useful for some applications.

But for most point mutations
that cause genetic diseases,

simply cutting the already-mutated gene
won’t benefit patients,

because the function of the mutated gene
needs to be restored,

not further disrupted.

So cutting this
already-mutated hemoglobin gene

that causes sickle cell anemia

won’t restore the ability of patients
to make healthy red blood cells.

And while we can sometimes introduce
new DNA sequences into cells

to replace the DNA sequences
surrounding a cut site,

that process, unfortunately, doesn’t work
in most types of cells,

and the disrupted gene outcomes
still predominate.

Like many scientists,
I’ve dreamed of a future

in which we might be able to treat
or maybe even cure

human genetic diseases.

But I saw the lack of a way
to fix point mutations,

which cause most human genetic diseases,

as a major problem standing in the way.

Being a chemist, I began
working with my students

to develop ways on performing chemistry
directly on an individual DNA base,

to truly fix, rather than disrupt,
the mutations that cause genetic diseases.

The results of our efforts
are molecular machines

called “base editors.”

Base editors use the programmable
searching mechanism of CRISPR scissors,

but instead of cutting the DNA,

they directly convert
one base to another base

without disrupting the rest of the gene.

So if you think of naturally occurring
CRISPR proteins as molecular scissors,

you can think of base editors as pencils,

capable of directly rewriting
one DNA letter into another

by actually rearranging
the atoms of one DNA base

to instead become a different base.

Now, base editors don’t exist in nature.

In fact, we engineered
the first base editor, shown here,

from three separate proteins

that don’t even come
from the same organism.

We started by taking CRISPR scissors
and disabling the ability to cut DNA

while retaining its ability to search for
and bind a target DNA sequence

in a programmed manner.

To those disabled CRISPR
scissors, shown in blue,

we attached a second protein in red,

which performs a chemical reaction
on the DNA base C,

converting it into a base
that behaves like T.

Third, we had to attach
to the first two proteins

the protein shown in purple,

which protects the edited base
from being removed by the cell.

The net result is an engineered
three-part protein

that for the first time
allows us to convert Cs into Ts

at specified locations in the genome.

But even at this point,
our work was only half done.

Because in order to be stable in cells,

the two strands of a DNA double helix
have to form base pairs.

And because C only pairs with G,

and T only pairs with A,

simply changing a C to a T
on one DNA strand creates a mismatch,

a disagreement between the two DNA strands

that the cell has to resolve
by deciding which strand to replace.

We realized that we could further engineer
this three-part protein

to flag the nonedited strand
as the one to be replaced

by nicking that strand.

This little nick tricks the cell

into replacing the nonedited G with an A

as it remakes the nicked strand,

thereby completing the conversion
of what used to be a C-G base pair

into a stable T-A base pair.

After several years of hard work

led by a former post doc
in the lab, Alexis Komor,

we succeeded in developing
this first class of base editor,

which converts Cs into Ts and Gs into As

at targeted positions of our choosing.

Among the more than 35,000 known
disease-associated point mutations,

the two kinds of mutations
that this first base editor can reverse

collectively account for about 14 percent
or 5,000 or so pathogenic point mutations.

But correcting the largest fraction
of disease-causing point mutations

would require developing
a second class of base editor,

one that could convert
As into Gs or Ts into Cs.

Led by Nicole Gaudelli,
a former post doc in the lab,

we set out to develop
this second class of base editor,

which, in theory, could correct up to
almost half of pathogenic point mutations,

including that mutation that causes
the rapid-aging disease progeria.

We realized that we could
borrow, once again,

the targeting mechanism of CRISPR scissors

to bring the new base editor
to the right site in a genome.

But we quickly encountered
an incredible problem;

namely, there is no protein

that’s known to convert
A into G or T into C

in DNA.

Faced with such a serious stumbling block,

most students would probably
look for another project,

if not another research advisor.

(Laughter)

But Nicole agreed to proceed with a plan

that seemed wildly ambitious at the time.

Given the absence
of a naturally occurring protein

that performs the necessary chemistry,

we decided we would evolve
our own protein in the laboratory

to convert A into a base
that behaves like G,

starting from a protein
that performs related chemistry on RNA.

We set up a Darwinian
survival-of-the-fittest selection system

that explored tens of millions
of protein variants

and only allowed those rare variants

that could perform the necessary
chemistry to survive.

We ended up with a protein shown here,

the first that can convert A in DNA

into a base that resembles G.

And when we attached that protein

to the disabled CRISPR
scissors, shown in blue,

we produced the second base editor,

which converts As into Gs,

and then uses the same
strand-nicking strategy

that we used in the first base editor

to trick the cell into replacing
the nonedited T with a C

as it remakes that nicked strand,

thereby completing the conversion
of an A-T base pair to a G-C base pair.

(Applause)

Thank you.

(Applause)

As an academic scientist in the US,

I’m not used to being
interrupted by applause.

(Laughter)

We developed these
first two classes of base editors

only three years ago
and one and a half years ago.

But even in that short time,

base editing has become widely used
by the biomedical research community.

Base editors have been sent
more than 6,000 times

at the request of more than
1,000 researchers around the globe.

A hundred scientific research papers
have been published already,

using base editors in organisms
ranging from bacteria

to plants to mice to primates.

While base editors are too new

to have already entered
human clinical trials,

scientists have succeeded in achieving
a critical milestone towards that goal

by using base editors in animals

to correct point mutations
that cause human genetic diseases.

For example,

a collaborative team of scientists
led by Luke Koblan and Jon Levy,

two additional students in my lab,

recently used a virus to deliver
that second base editor

into a mouse with progeria,

changing that disease-causing
T back into a C

and reversing its consequences
at the DNA, RNA and protein levels.

Base editors have also
been used in animals

to reverse the consequence of tyrosinemia,

beta thalassemia, muscular dystrophy,

phenylketonuria, a congenital deafness

and a type of cardiovascular disease –

in each case, by directly
correcting a point mutation

that causes or contributes to the disease.

In plants, base editors have been used

to introduce individual
single DNA letter changes

that could lead to better crops.

And biologists have used base editors
to probe the role of individual letters

in genes associated
with diseases such as cancer.

Two companies I cofounded,
Beam Therapeutics and Pairwise Plants,

are using base editing
to treat human genetic diseases

and to improve agriculture.

All of these applications of base editing

have taken place in less
than the past three years:

on the historical timescale of science,

the blink of an eye.

Additional work lies ahead

before base editing can realize
its full potential

to improve the lives of patients
with genetic diseases.

While many of these diseases
are thought to be treatable

by correcting the underlying mutation

in even a modest fraction
of cells in an organ,

delivering molecular machines
like base editors

into cells in a human being

can be challenging.

Co-opting nature’s viruses
to deliver base editors

instead of the molecules
that give you a cold

is one of several promising
delivery strategies

that’s been successfully used.

Continuing to develop
new molecular machines

that can make all of the remaining ways

to convert one base pair
to another base pair

and that minimize unwanted editing
at off-target locations in cells

is very important.

And engaging with other scientists,
doctors, ethicists and governments

to maximize the likelihood
that base editing is applied thoughtfully,

safely and ethically,

remains a critical obligation.

These challenges notwithstanding,

if you had told me
even just five years ago

that researchers around the globe

would be using laboratory-evolved
molecular machines

to directly convert
an individual base pair

to another base pair

at a specified location
in the human genome

efficiently and with a minimum
of other outcomes,

I would have asked you,

“What science-fiction novel
are you reading?”

Thanks to a relentlessly dedicated
group of students

who were creative enough to engineer
what we could design ourselves

and brave enough
to evolve what we couldn’t,

base editing has begun to transform
that science-fiction-like aspiration

into an exciting new reality,

one in which the most important gift
we give our children

may not only be
three billion letters of DNA,

but also the means to protect
and repair them.

Thank you.

(Applause)

Thank you.

你的父母给你的最重要的礼物

是组成你基因组的
两组 30 亿个 DNA 字母

但就像任何
具有 30 亿个组件的东西一样,

这种礼物是脆弱的。

阳光、吸烟、不健康的饮食,

甚至
是细胞自发的错误,

都会导致基因组发生变化。

DNA 中最常见的变化

是一个字母
或碱基(例如 C)

与不同的字母(
例如 T、G 或 A)的简单交换。

在任何一天,您体内的细胞
将共同积累

数十亿个 这些单字母交换
,也称为“点突变”。

现在,大多数这些
点突变都是无害的。

时不时地,点突变会破坏
细胞中的一项重要功能

或导致细胞
以有害的方式行为不端。

如果该突变是
从您的父母那里遗传的,

或者
在您发育的早期发生,

那么结果将是
您的许多或所有细胞

都含有这种有害突变。

然后您将
成为数亿

患有遗传疾病的人中的一员,

例如镰状细胞性贫血或早衰

症或肌肉萎缩症
或泰萨克斯病。

由点突变引起的严重遗传病

尤其令人沮丧,

因为我们通常知道导致该疾病
的确切单字母变化


并且理论上可以治愈该疾病。

数百万人患有镰状细胞性贫血,

因为

他们的血红蛋白基因的两个拷贝中都有一个 A 到 T 点突变。

患有早衰症的孩子
出生时

基因组中只有一个位置有一个 T,

而你有一个 C,这

带来了毁灭性的后果
,这些优秀、聪明的

孩子很快衰老,并
在大约 14 岁时去世。

纵观医学历史,

我们 还没有
办法有效地纠正

生命系统中的点突变

,将导致疾病的
T 变回 C。

也许直到现在。

因为我的实验室最近
成功开发了这种能力

,我们称之为“碱基编辑”。

我们开发碱基编辑的故事

实际上始于 30 亿年前。

我们认为细菌
是感染源,

但细菌本身也
容易被感染

,特别是被病毒感染。

所以大约三十亿年前,

细菌进化出一种防御机制
来对抗病毒感染。

这种防御机制
现在被称为 CRISPR。

而CRISPR中的弹头
就是这种紫色蛋白质

,它就像分子
剪刀一样切割DNA,

将双螺旋分成两部分。

如果 CRISPR 不能
区分细菌和病毒 DNA,

它就不是一个非常有用的
防御系统。

但 CRISPR 最令人惊奇的特点

是,剪刀可以被
编程为仅搜索、

结合和切割

特定的 DNA 序列。

因此,当细菌
第一次遇到病毒时,

它可以存储
该病毒 DNA 的一小段片段,


用作指导 CRISPR 剪刀

在未来感染期间切割该病毒 DNA 序列的程序

切割病毒的 DNA 会破坏被
切割病毒基因的功能

,从而
破坏病毒的生命周期。 六年前

,包括 Emmanuelle Charpentier、George Church、

Jennifer Doudna 和 Feng Zhang 在内的杰出研究人员

展示了如何通过编程 CRISPR 剪刀

来切割我们选择的 DNA 序列,

包括基因组中的序列,

而不是细菌选择的病毒 DNA 序列

但结果实际上是相似的。

切割基因组中的 DNA 序列

也会破坏
切割基因的功能,通常是

通过在切割位点插入和删除
DNA 字母的随机混合物

现在,破坏基因
对某些应用非常有用。

但对于大多数
导致遗传疾病的点突变,

简单地切割已经突变的基因
不会使患者受益,

因为突变基因的功能
需要恢复,

而不是进一步破坏。

因此,切割

这种导致镰状细胞性贫血的已经突变的血红蛋白基因

不会恢复
患者制造健康红细胞的能力。

虽然我们有时可以将
新的 DNA 序列引入细胞

以替换
切割位点周围的 DNA 序列

,但不幸的是,该过程
在大多数类型的细胞中不起作用,

并且被破坏的基因结果
仍然占主导地位。

像许多科学家一样,
我梦想着

未来我们可能能够治疗
甚至治愈

人类遗传疾病。

但我认为缺乏修复点突变的方法是阻碍

大多数人类遗传

疾病的主要问题。

作为一名化学家,我
开始与我的学生

一起开发
直接在单个 DNA 碱基上进行化学的方法,

以真正修复而不是破坏
导致遗传疾病的突变。

我们努力的结果是

称为“碱基编辑器”的分子机器。

碱基编辑器使用
CRISPR 剪刀的可编程搜索机制,

但不是切割 DNA,

而是直接将
一个碱基转换为另一个碱基,

而不破坏基因的其余部分。

因此,如果您将天然存在的
CRISPR 蛋白质视为分子剪刀,

您可以将碱基编辑器视为铅笔,

能够

通过实际重新排列
一个 DNA 碱基的原子来直接将一个 DNA 字母改写为另一个碱基,

从而变成另一个碱基。

现在,自然界中不存在碱基编辑器。

事实上,我们用三种不同的蛋白质设计
了第一个碱基编辑器,如图所示,这些

蛋白质甚至不
来自同一个生物体。

我们首先使用 CRISPR 剪刀
并禁用切割 DNA 的能力,

同时保留其以编程方式搜索
和结合目标 DNA 序列的能力

对于那些被禁用的 CRISPR
剪刀,以蓝色显示,

我们附加了第二个红色蛋白质,


在 DNA 碱基 C 上进行化学反应,

将其转化为
行为类似于 T 的碱基。

第三,我们必须附加
到前两种蛋白质上

紫色显示的蛋白质,

它保护编辑的碱基
不被细胞去除。

最终结果是一种工程化的
三部分蛋白质

,它首次
允许我们

在基因组的特定位置将 Cs 转化为 Ts。

但即使在这一点上,
我们的工作也只完成了一半。

因为为了在细胞中稳定,

DNA双螺旋的两条链
必须形成碱基对。

由于 C 只与 G 配对,

而 T 只与 A 配对,

简单地将一条 DNA 链上的 C 变为 T
会产生错配,

即细胞必须
通过决定替换哪条链来解决两条 DNA 链之间的分歧。

我们意识到我们可以进一步设计
这种由三部分组成的蛋白质,

以将未编辑的链标记为通过切割该
链来替换

的链。

这个小缺口会诱使细胞

用 A 代替未经编辑的 G,

因为它会重新形成缺口链,

从而完成
将曾经是 C-G 碱基对

转换为稳定的 T-A 碱基对的过程。

经过

实验室前博士后 Alexis Komor 领导的几年努力,

我们成功开发
了第一类碱基编辑器,

它可以在我们选择的目标位置将 Cs 转换为 Ts,将 Gs 转换为 As

在已知的 35,000 多个与
疾病相关的点突变中

,这个第一个碱基编辑器可以逆转的两种突变

合计约占 14%
或 5,000 个左右的致病点突变。

但是纠正
大部分致病点突变

需要
开发第二类碱基编辑器,

一种可以将
As 转换为 Gs 或将 Ts 转换为 Cs 的碱基编辑器。

在实验室前博士后 Nicole Gaudelli 的带领下,

我们着手
开发第二类碱基编辑

器,理论上它可以纠正多达
一半的致病点

突变,包括
导致快速衰老的突变 疾病早衰。

我们意识到我们可以
再次借用

CRISPR 剪刀的靶向机制,

将新的碱基编辑器
带到基因组中的正确位点。

但是我们很快遇到
了一个不可思议的问题;

也就是说,没有

已知的蛋白质可以将 DNA 中的
A 转化为 G 或 T 转化为 C。

面对如此严重的绊脚石,

大多数学生可能
会寻找另一个项目,

如果不是另一个研究顾问的话。

(笑声)

但妮可同意继续执行

当时似乎雄心勃勃的计划。

鉴于
没有天然存在的蛋白质

来执行必要的化学作用,

我们决定
在实验室中进化我们自己的蛋白质,

以将 A 转化为
行为类似于 G 的碱基,


对 RNA 执行相关化学的蛋白质开始。

我们建立了一个达尔文
的适者生存选择系统

,探索了数以千万计
的蛋白质变体

,只允许

那些能够进行必要
化学反应的稀有变体生存。

我们最终得到了这里显示的蛋白质

,第一个可以将 DNA 中的 A

转化为类似于 G 的碱基。

当我们将该蛋白质连接

到禁用的 CRISPR
剪刀上时,以蓝色显示,

我们产生了第二个碱基编辑器,

它将 As 进入 Gs,

然后

使用我们在第一个碱基编辑器中使用的相同的链切口策略

来欺骗单元格
用 C 替换未编辑的 T,

因为它重新制作了切口链,

从而完成将
AT 碱基对转换为 GC 碱基对。

(掌声)

谢谢。

(掌声)

作为美国的学术科学家,

我不习惯
被掌声打断。

(笑声)

我们


年前和一年半前开发了前两类碱基编辑器。

但即使在这么短的时间内,

碱基编辑也已
被生物医学研究界广泛使用。


全球 1,000 多名研究人员的要求,已发送 6,000 多次碱基编辑器。 已经发表

了一百篇科学研究论文

使用
了从细菌

到植物到小鼠到灵长类动物等生物体的碱基编辑器。

虽然碱基编辑器还太新

而无法进入
人体临床试验,但

科学家们

通过在动物中使用碱基编辑器

来纠正
导致人类遗传疾病的点突变,成功地实现了实现这一目标的关键里程碑。

例如,

由我实验室的另外两名学生 Luke Koblan 和 Jon Levy 领导的一个科学家合作团队

最近使用一种病毒
将第二个碱基编辑

器传递给患有早衰症的小鼠,

将导致疾病的
T 变回 C

和 扭转其
在 DNA、RNA 和蛋白质水平上的后果。

碱基编辑器也
被用于动物,

以逆转酪氨酸血症、

β地中海贫血、肌营养不良症、

苯丙酮尿症、先天性耳聋

和一种心血管疾病的后果——

在每种情况下,通过直接
纠正

导致或促成 疾病。

在植物中,碱基编辑器已被

用于引入
单个 DNA 字母的变化

,这可能会导致更好的作物。

生物学家已经使用碱基编辑器
来探究单个字母


与癌症等疾病相关的基因中的作用。

我共同创立的两家公司
Beam Therapeutics 和 Pairwise Plants

正在使用碱基编辑
来治疗人类遗传疾病

和改善农业。

所有这些碱基编辑应用

都发生在
不到三年的时间里:

在科学的历史时间尺度上

,眨眼之间。

在碱基编辑能够
充分发挥

其改善
遗传病患者生活的潜力之前,还有更多的工作要做。

虽然许多这些疾病
被认为可以

通过纠正

器官中一小部分细胞的潜在突变来治疗,但


诸如碱基编辑器之类的分子机器传递

到人体细胞中

可能具有挑战性。

选择自然界的病毒
来传递碱基编辑器

而不是
让你感冒的分子

是几种

已成功使用的有希望的传递策略之一。

继续开发
新的分子机器

,使所有剩余的方法

能够将一个碱基对转换
为另一个碱基对,

并最大限度地减少
细胞中脱靶位置的不必要编辑,这

一点非常重要。

与其他科学家、
医生、伦理学家和政府合作,

以最大限度地提高
碱基编辑的可能性,使其得到深思熟虑、

安全和合乎道德的应用,

仍然是一项至关重要的义务。

尽管有这些挑战,

如果
你在五年前

告诉我,全球的研究人员

将使用实验室进化的
分子机器

,在人类基因组中的特定位置有效地直接
将单个碱基对转换

为另一个碱基对

至少其他结果,

我会问你,


你在读什么科幻小说?”

感谢一群孜孜不倦
的学生

,他们有足够的创造力来设计
我们可以自己设计的东西,

也足够勇敢
地发展我们不能设计的东西,

基础编辑已经开始
将科幻小说般的愿望

转变为令人兴奋的新现实,

一个 其中,我们给孩子的最重要的礼物

可能不仅是
30 亿个 DNA 字母,

而且是保护
和修复它们的手段。

谢谢你。

(掌声)

谢谢。