How CRISPR lets you edit DNA Andrea M. Henle

From the smallest single-celled organism

to the largest creatures on earth,

every living thing is defined
by its genes.

The DNA contained in our genes acts like
an instruction manual for our cells.

Four building blocks called bases are
strung together in precise sequences,

which tell the cell how to behave

and form the basis for our every trait.

But with recent advancements
in gene editing tools,

scientists can change an organism’s
fundamental features in record time.

They can engineer drought-resistant crops

and create apples that don’t brown.

They might even prevent the spread
of infectious outbreaks

and develop cures for genetic diseases.

CRISPR is the fastest, easiest, and
cheapest of the gene editing tools

responsible for this new wave of science.

But where did this medical
marvel come from?

How does it work?

And what can it do?

Surprisingly, CRISPR is actually a
natural process

that’s long functioned as a
bacterial immune system.

Originally found defending single-celled
bacteria and archaea

against invading viruses,

naturally occurring CRISPR uses
two main components.

The first are short snippets of
repetitive DNA sequences

called “clustered regularly interspaced
short palindromic repeats,”

or simply, CRISPRs.

The second are Cas,

or “CRISPR-associated” proteins

which chop up DNA like molecular scissors.

When a virus invades a bacterium,

Cas proteins cut out a segment
of the viral DNA

to stitch into the bacterium’s
CRISPR region,

capturing a chemical snapshot
of the infection.

Those viral codes are then copied
into short pieces of RNA.

This molecule plays many roles
in our cells,

but in the case of CRISPR,

RNA binds to a special protein
called Cas9.

The resulting complexes act like scouts,

latching onto free-floating
genetic material

and searching for a match to the virus.

If the virus invades again, the scout
complex recognizes it immediately,

and Cas9 swiftly destroys the viral DNA.

Lots of bacteria have this type
of defense mechanism.

But in 2012, scientists figured out
how to hijack CRISPR

to target not just viral DNA,

but any DNA in almost any organism.

With the right tools,

this viral immune system becomes a
precise gene-editing tool,

which can alter DNA and
change specific genes

almost as easily as fixing a typo.

Here’s how it works in the lab:

scientists design a “guide” RNA
to match the gene they want to edit,

and attach it to Cas9.

Like the viral RNA in the
CRISPR immune system,

the guide RNA directs Cas9
to the target gene,

and the protein’s molecular scissors
snip the DNA.

This is the key to CRISPR’s power:

just by injecting Cas9 bound to a short
piece of custom guide RNA

scientists can edit practically
any gene in the genome.

Once the DNA is cut,

the cell will try to repair it.

Typically, proteins called nucleases

trim the broken ends and
join them back together.

But this type of repair process,

called nonhomologous end joining,

is prone to mistakes

and can lead to extra or missing bases.

The resulting gene is often unusable
and turned off.

However, if scientists add a separate
sequence of template DNA

to their CRISPR cocktail,

cellular proteins can perform
a different DNA repair process,

called homology directed repair.

This template DNA is used as a blueprint
to guide the rebuilding process,

repairing a defective gene

or even inserting a completely new one.

The ability to fix DNA errors

means that CRISPR could potentially
create new treatments for diseases

linked to specific genetic errors, like
cystic fibrosis or sickle cell anemia.

And since it’s not limited to humans,

the applications are almost endless.

CRISPR could create plants
that yield larger fruit,

mosquitoes that can’t transmit malaria,

or even reprogram drug-resistant
cancer cells.

It’s also a powerful tool
for studying the genome,

allowing scientists to watch
what happens when genes are turned off

or changed within an organism.

CRISPR isn’t perfect yet.

It doesn’t always make
just the intended changes,

and since it’s difficult to predict the
long-term implications of a CRISPR edit,

this technology raises
big ethical questions.

It’s up to us to decide the
best course forward

as CRISPR leaves single-celled
organisms behind

and heads into labs, farms, hospitals,

and organisms around the world.

从最小的单细胞

生物到地球上最大的生物,

每一个生物都是
由它的基因定义的。

我们基因中包含的 DNA 就像
我们细胞的使用说明书。

四个称为碱基的构建块
以精确的顺序串在一起,

它们告诉细胞如何表现

并形成我们每个特征的基础。

但随着
基因编辑工具的最新进展,

科学家们可以
在创纪录的时间内改变生物体的基本特征。

他们可以设计出抗旱作物,

并创造出不褐变的苹果。

他们甚至可以防止
传染病暴发的传播

并开发出治疗遗传疾病的方法。

CRISPR 是负责这一新科学浪潮
的基因编辑工具中最快、最简单、最便宜的工具

但是这个医学
奇迹是从哪里来的呢?

它是如何工作的?

它可以做什么?

令人惊讶的是,CRISPR 实际上是

一种长期以来作为
细菌免疫系统发挥作用的自然过程。

最初发现保护单细胞
细菌和古细菌

免受入侵病毒的侵害,

天然存在的 CRISPR 使用
两个主要成分。

第一个是
重复 DNA 序列的短片段,

称为“成簇的规则间隔的
短回文重复序列”,

或简称为 CRISPR。

第二种是 Cas,

或“CRISPR 相关”蛋白质

,它们像分子剪刀一样切割 DNA。

当病毒入侵细菌时,

Cas 蛋白会切下
一段病毒 DNA

以缝合到细菌的
CRISPR 区域,从而

捕获感染的化学
快照。

然后将这些病毒代码复制
到短片段的 RNA 中。

这种分子
在我们的细胞中扮演着许多角色,

但在 CRISPR 的情况下,

RNA 与一种称为 Cas9 的特殊蛋白质结合

由此产生的复合物就像侦察员一样,

锁定自由浮动的
遗传物质

并寻找与病毒匹配的对象。

如果病毒再次入侵,侦察
复合体会立即识别它

,Cas9 会迅速破坏病毒 DNA。

许多细菌都有
这种防御机制。

但在 2012 年,科学家们想出了
如何劫持 CRISPR

以不仅针对病毒 DNA,

还针对几乎任何生物体中的任何 DNA。

有了正确的工具,

这种病毒免疫系统就变成了一种
精确的基因编辑工具,

它可以改变 DNA 和
改变特定基因,

几乎就像修复错字一样容易。

以下是它在实验室中的工作原理:

科学家设计了一种“引导”RNA,
以匹配他们想要编辑的基因,

并将其附加到 Cas9 上。

与 CRISPR 免疫系统中的病毒 RNA 一样

,引导 RNA 将 Cas9 引导
至目标基因

,蛋白质的分子剪刀
剪断 DNA。

这是 CRISPR 强大功能的关键:

只需注入与一小段定制指导 RNA 结合的 Cas9,

科学家就可以编辑
基因组中的几乎任何基因。

一旦 DNA 被切割

,细胞就会尝试修复它。

通常,称为核酸酶的蛋白质会

修剪断裂的末端并将
它们重新连接在一起。

但是这种类型的修复过程,

称为非同源末端连接

,容易出错,

并可能导致额外或缺失的碱基。

由此产生的基因通常无法使用
并被关闭。

然而,如果科学家将单独
的模板 DNA 序列添加

到他们的 CRISPR 鸡尾酒中,

细胞蛋白可以
执行不同的 DNA 修复过程,

称为同源定向修复。

该模板 DNA 被用作
指导重建过程、

修复缺陷基因

甚至插入全新基因的蓝图。

修复 DNA 错误的能力

意味着 CRISPR 可能
为与特定遗传错误相关的疾病创造新的治疗方法

,如
囊性纤维化或镰状细胞性贫血。

而且由于它不仅限于人类

,因此应用几乎是无穷无尽的。

CRISPR可以创造
出果实更大的植物、

不能传播疟疾的蚊子,

甚至可以重新编程耐药
癌细胞。

它也是
研究基因组的强大工具,

让科学家能够观察生物体内
基因关闭或改变时会发生什么

CRISPR还不完美。

它并不总是
做出预期的改变,

而且由于很难预测
CRISPR 编辑的长期影响,

这项技术引发了
重大的伦理问题。

当 CRISPR 将单细胞
生物抛在脑后

,进入世界各地的实验室、农场、医院

和生物体时,由我们来决定最好的前进方向。