How to build synthetic DNA and send it across the internet Dan Gibson

Alright, let me tell you
about building synthetic cells

and printing life.

But first, let me tell you a quick story.

On March 31, 2013,

my team and I received an email
from an international health organization,

alerting us that two men died in China

shortly after contracting
the H7N9 bird flu.

There were fears of a global pandemic

as the virus started rapidly
moving across China.

Although methods existed
to produce a flu vaccine

and stop the disease from spreading,

at best, it would not be available
for at least six months.

This is because a slow, antiquated
flu vaccine manufacturing process

developed over 70 years ago
was the only option.

The virus would need to be isolated
from infected patients,

packaged up and then sent to a facility

where scientists would inject
the virus into chicken eggs,

and incubate those chicken eggs
for several weeks

in order to prepare the virus
for the start of a multistep,

multimonth flu vaccine
manufacturing process.

My team and I received this email

because we had just invented
a biological printer,

which would allow
for the flu vaccine instructions

to be instantly downloaded
from the internet and printed.

Drastically speeding up the way
in which flu vaccines are made,

and potentially saving thousands of lives.

The biological printer leverages
our ability to read and write DNA

and starts to bring into focus

what we like to call
biological teleportation.

I am a biologist and an engineer
who builds stuff out of DNA.

Believe it or not,
one of my favorite things to do

is to take DNA apart
and put it back together

so that I can understand
better how it works.

I can edit and program DNA to do things,
just like coders programing a computer.

But my apps are different.

They create life.

Self-replicating living cells
and things like vaccines and therapeutics

that work in ways
that were previously impossible.

Here’s National Medal of Science
recipient Craig Venter

and Nobel laureate Ham Smith.

These two guys shared a similar vision.

That vision was, because all
of the functions and characteristics

of all biological entities,
including viruses and living cells,

are written into the code of DNA,

if one can read and write
that code of DNA,

then they can be reconstructed
in a distant location.

This is what we mean
by biological teleportation.

To prove out this vision,

Craig and Ham set a goal
of creating, for the first time,

a synthetic cell, starting
from DNA code in the computer.

I mean, come on,
as a scientist looking for a job,

doing cutting-edge research,
it doesn’t get any better than this.

(Laughter)

OK, a genome is a complete set
of DNA within an organism.

Following the Human
Genome Project in 2003,

which was an international
effort to identify

the complete genetic blueprint
of a human being,

a genomics revolution happened.

Scientists started mastering
the techniques for reading DNA.

In order to determine the order
of the As, Cs, Ts and Gs

within an organism.

But my job was far different.

I needed to master
the techniques for writing DNA.

Like an author of a book,

this started out
as writing short sentences,

or sequences of DNA code,

but this soon turned into
writing paragraphs

and then full-on novels of DNA code,

to make important biological instructions
for proteins and living cells.

Living cells are nature’s most efficient
machines at making new products,

accounting for the production

of 25 percent of the total
pharmaceutical market,

which is billions of dollars.

We knew that writing DNA
would drive this bioeconomy even more,

once cells could be programmed
just like computers.

We also knew that writing DNA
would enable biological teleportation …

the printing of defined,
biological material,

starting from DNA code.

As a step toward bringing
these promises to fruition,

our team set out to create,
for the first time,

a synthetic bacterial cell,

starting from DNA code in the computer.

Synthetic DNA is a commodity.

You can order very short pieces of DNA
from a number of companies,

and they will start from these four
bottles of chemicals that make up DNA,

G, A, T and C,

and they will build
those very short pieces of DNA for you.

Over the past 15 years or so,

my teams have been
developing the technology

for stitching together
those short pieces of DNA

into complete bacterial genomes.

The largest genome that we constructed
contained over one million letters.

Which is more than twice the size
of your average novel,

and we had to put every single one
of those letters in the correct order,

without a single typo.

We were able to accomplish this
by developing a procedure

that I tried to call the “one-step
isothermal in vitro recombination method.”

(Laughter)

But, surprisingly, the science community
didn’t like this technically accurate name

and decided to call it Gibson Assembly.

Gibson Assembly
is now the gold standard tool,

used in laboratories around the world

for building short and long pieces of DNA.

(Applause)

Once we chemically synthesized
the complete bacterial genome,

our next challenge was to find a way

to convert it into a free-living,
self-replicating cell.

Our approach was to think of the genome
as the operating system of the cell,

with the cell containing the hardware
necessary to boot up the genome.

Through a lot of trial and error,

we developed a procedure
where we could reprogram cells

and even convert one
bacterial species into another,

by replacing the genome of one cell
with that of another.

This genome transplantation
technology then paved the way

for the booting-up of genomes
written by scientists

and not by Mother Nature.

In 2010, all of the technologies

that we had been developing
for reading and writing DNA

all came together
when we announced the creation

of the first synthetic cell,

which of course, we called Synthia.

(Laughter)

Ever since the first bacterial genome
was sequenced, back in 1995,

thousands more whole bacterial genomes
have been sequenced and stored

in computer databases.

Our synthetic cell work
was the proof of concept

that we could reverse this process:

pull a complete bacterial genome
sequence out of the computer

and convert that information
into a free-living, self-replicating cell,

with all of the expected characteristics
of the species that we constructed.

Now I can understand
why there may be concerns

about the safety of this level
of genetic manipulation.

While the technology has the potential
for great societal benefit,

it also has the potential for doing harm.

With this in mind, even before
carrying out the very first experiment,

our team started to work
with the public and the government

to find solutions together

to responsibly develop
and regulate this new technology.

One of the outcomes from those discussions
was to screen every customer

and every customer’s DNA synthesis orders,

to make sure that pathogens or toxins
are not being made by bad guys,

or accidentally by scientists.

All suspicious orders
are reported to the FBI

and other relevant
law-enforcement agencies.

Synthetic cell technologies
will power the next industrial revolution

and transform industries and economies

in ways that address
global sustainability challenges.

The possibilities are endless.

I mean, you can think of clothes

constructed form renewable
biobased sources,

cars running on biofuel
from engineered microbes,

plastics made from biodegradable polymers

and customized therapies,
printed at a patient’s bedside.

The massive efforts
to create synthetic cells

have made us world leaders at writing DNA.

Throughout the process,
we found ways to write DNA faster,

more accurately and more reliably.

Because of the robustness
of these technologies,

we found that we could
readily automate the processes

and move the laboratory workflows
out of the scientist’s hands

and onto a machine.

In 2013, we built the first DNA printer.

We call it the BioXp.

And it has been absolutely
essential in writing DNA

across a number of applications

my team and researchers
around the world are working on.

It was shortly after we built the BioXp

that we received that email
about the H7N9 bird flu scare in China.

A team of Chinese scientists
had already isolated the virus,

sequenced its DNA and uploaded
the DNA sequence to the internet.

At the request of the US government,
we downloaded the DNA sequence

and in less than 12 hours,
we printed it on the BioXp.

Our collaborators at Novartis

then quickly started turning
that synthetic DNA into a flu vaccine.

Meanwhile, the CDC, using technology
dating back to the 1940s,

was still waiting for the virus
to arrive from China

so that they could begin
their egg-based approach.

For the first time, we had a flu vaccine
developed ahead of time

for a new and potentially
dangerous strain,

and the US government ordered a stockpile.

(Applause)

This was when I began
to appreciate, more than ever,

the power of biological teleportation.

(Laughter)

Naturally, with this in mind,

we started to build
a biological teleporter.

We call it the DBC.

That’s short for
digital-to-biological converter.

Unlike the BioXp,

which starts from pre-manufactured
short pieces of DNA,

the DBC starts from digitized DNA code

and converts that DNA code
into biological entities,

such as DNA, RNA,
proteins or even viruses.

You can think of the BioXp
as a DVD player,

requiring a physical DVD to be inserted,

whereas the DBC is Netflix.

To build the DBC,

my team of scientists worked with
software and instrumentation engineers

to collapse multiple laboratory workflows,

all in a single box.

This included software algorithms
to predict what DNA to build,

chemistry to link the G, A, T and C
building blocks of DNA into short pieces,

Gibson Assembly to stitch together
those short pieces into much longer ones,

and biology to convert the DNA
into other biological entities,

such as proteins.

This is the prototype.

Although it wasn’t pretty,
it was effective.

It made therapeutic drugs and vaccines.

And laboratory workflows
that once took weeks or months

could now be carried out
in just one to two days.

And that’s all without
any human intervention

and simply activated
by the receipt of an email

which could be sent
from anywhere in the world.

We like to compare
the DBC to fax machines.

But whereas fax machines
received images and documents,

the DBC receives biological materials.

Now, consider how
fax machines have evolved.

The prototype of the 1840s
is unrecognizable,

compared with the fax machines of today.

In the 1980s, most people
still didn’t know what a fax machine was,

and if they did,

it was difficult for them
to grasp the concept

of instantly reproducing an image
on the other side of the world.

But nowadays, everything
that a fax machine does

is integrated on our smart phones,

and of course, we take this rapid exchange
of digital information for granted.

Here’s what our DBC looks like today.

We imagine the DBC evolving
in similar ways as fax machines have.

We’re working to reduce
the size of the instrument,

and we’re working to make
the underlying technology

more reliable, cheaper,
faster and more accurate.

Accuracy is extremely important
when synthesizing DNA,

because a single change to a DNA letter

could mean the difference
between a medicine working or not

or synthetic cell being alive or dead.

The DBC will be useful
for the distributed manufacturing

of medicine starting from DNA.

Every hospital in the world
could use a DBC

for printing personalized medicines
for a patient at their bedside.

I can even imagine a day
when it’s routine for people to have a DBC

to connect to their
home computer or smart phone

as a means to download
their prescriptions,

such as insulin or antibody therapies.

The DBC will also be valuable when placed
in strategic areas around the world,

for rapid response to disease outbreaks.

For example, the CDC in Atlanta, Georgia

could send flu vaccine instructions
to a DBC on the other side of the world,

where the flu vaccine is manufactured
right on the front lines.

That flu vaccine could even be
specifically tailored to the flu strain

that’s circulating in that local area.

Sending vaccines around in a digital file,

rather than stockpiling those same
vaccines and shipping them out,

promises to save thousands of lives.

Of course, the applications
go as far as the imagination goes.

It’s not hard to imagine
placing a DBC on another planet.

Scientists on Earth could then send
the digital instructions to that DBC

to make new medicines
or to make synthetic organisms

that produce oxygen, food,
fuel or building materials,

as a means for making the planet
more habitable for humans.

(Applause)

With digital information
traveling at the speed of light,

it would only take minutes
to send those digital instructions

from Earth to Mars,

but it would take months
to physically deliver those same samples

on a spacecraft.

But for now, I would be satisfied
beaming new medicines across the globe,

fully automated and on demand,

saving lives from emerging
infectious diseases

and printing personalized cancer medicines
for those who don’t have time to wait.

Thank you.

(Applause)

好吧,让我告诉你
关于构建合成细胞

和打印生命。

但首先,让我告诉你一个简短的故事。

2013 年 3 月 31 日,

我和我的团队收到一封
来自国际卫生组织的电子邮件,

提醒我们有两名男子


感染 H7N9 禽流感后不久在中国死亡。 随着病毒开始在中国迅速

传播,人们担心会发生全球大流行

尽管
存在生产流感疫苗

和阻止疾病传播的方法

,但
充其量至少要六个月才能使用。

这是因为 70 多年前开发的缓慢、陈旧的
流感疫苗制造工艺

是唯一的选择。

病毒需要
从受感染的病人身上分离出来,

包装起来,然后送到

科学家
将病毒注射到鸡蛋中的设施,

并将这些鸡蛋孵化
数周

,以便为病毒
的开始做好准备。

数月的流感疫苗
生产过程。

我和我的团队收到了这封电子邮件,

因为我们刚刚发明
了一种生物打印机,

可以立即
从互联网上下载并打印流感疫苗说明。

大幅
加快流感疫苗的制造速度,

并可能挽救数千人的生命。

生物打印机利用
我们读取和写入 DNA 的能力

,开始关注

我们喜欢称之为
生物隐形传态的东西。

我是一名生物学家和工程师
,他用 DNA 制造东西。

信不信由你
,我最喜欢做的事情之一

就是将 DNA 拆开
并重新组合起来,

这样我就可以
更好地了解它是如何工作的。

我可以编辑和编程 DNA 来做事,
就像程序员给电脑编程一样。

但是我的应用程序是不同的。

他们创造生命。

自我复制的活细胞
以及疫苗和疗法

等以以前不可能的方式发挥作用的东西。

这是国家科学
奖章获得者 Craig Venter

和诺贝尔奖获得者 Ham Smith。

这两个人有着相似的愿景。

那个愿景是,因为

所有生物实体的所有功能和特征,
包括病毒和活细胞,

都被写入 DNA 代码,

如果一个人可以读取和写入
该 DNA 代码,

那么它们就可以
在遥远的地方重建 .

这就是我们所说
的生物隐形传态。

为了证明这一愿景,

克雷格和汉姆设定了一个
目标,即首次

从计算机中的 DNA 代码创建合成细胞。

我的意思是,来吧,
作为一个寻找工作的科学家,

做前沿研究
,没有比这更好的了。

(笑声)

好吧,基因组是
生物体内的一整套DNA。


2003 年人类基因组计划

(一项
旨在确定

人类完整基因
蓝图的国际努力)之后,

一场基因组学革命发生了。

科学家们开始掌握
读取 DNA 的技术。

为了确定
生物体内 As、Cs、Ts 和 Gs 的顺序

但我的工作却大不相同。

我需要掌握
编写 DNA 的技术。

就像一本书的作者一样,

这开始
是写短句

或 DNA 代码序列,

但很快就变成了
写段落

,然后是完整的 DNA 代码小说,

为蛋白质和活细胞制定重要的生物学指令

活细胞是自然界
生产新产品最高效的机器,

占整个医药市场的 25%

即数十亿美元。

我们知道,一旦细胞可以像计算机一样被编程,编写 DNA
将进一步推动这种生物经济

我们还知道,编写 DNA
将使生物隐形传输成为可能

……从 DNA 代码开始打印已定义的
生物材料

作为
实现这些承诺的一步,

我们的团队

开始从计算机中的 DNA 代码开始,首次创建合成细菌细胞。

合成 DNA 是一种商品。

你可以从多家公司订购非常短的 DNA

,他们将从
构成 DNA、

G、A、T 和 C 的这四瓶化学物质开始

,他们会
为你构建这些非常短的 DNA。

在过去 15 年左右的时间里,

我的团队一直在
开发将

这些短 DNA 片段拼接

成完整细菌基因组的技术。

我们构建的最大基因组
包含超过一百万个字母。


是普通小说的两倍多

,我们必须将
这些字母中的每一个都按正确的顺序排列,

没有一个拼写错误。

我们能够
通过开发

一种我试图称之为“一步
等温体外重组方法”的程序来实现这一目标。

(笑声)

但是,令人惊讶的是,科学界
不喜欢这个技术上准确的名字,

并决定将其命名为吉布森大会。

Gibson Assembly
现在是黄金标准工具

,在世界各地的实验室中

用于构建短片段和长片段 DNA。

(掌声)

一旦我们化学合成
了完整的细菌基因组,

我们的下一个挑战就是找到一种

方法将其转化为自由生活、
自我复制的细胞。

我们的方法是将基因组
视为细胞的操作系统,

其中包含
启动基因组所需的硬件。

通过大量的试验和错误,

我们开发了一种程序
,通过用另一个细胞的基因组替换一个细胞的基因组,我们可以重新编程细胞

,甚至将一种
细菌物种转化为另一种细菌

这种基因组移植
技术

为启动

科学家而非大自然母亲编写的基因组铺平了道路。

2010 年,当我们宣布创建第一个合成细胞(当然,我们称之为 Synthia)时

,我们一直在开发
的所有用于读取和写入 DNA 的技术

都聚集在一起

(笑声)

自从第一个细菌基因组
被测序以来,早在 1995 年,

已有数千个完整的细菌基因组
被测序并存储

在计算机数据库中。

我们的合成细胞
工作证明了

我们可以逆转这一过程的概念:从计算机中

提取完整的细菌基因组
序列

,并将该信息
转化为具有该物种所有预期特征的自由生活、自我复制的细胞

我们建造的。

现在我可以理解
为什么人们会

担心这种级别
的基因操作的安全性。

虽然该技术具有
巨大的社会效益潜力,

但它也有可能造成伤害。

考虑到这一点,甚至
在进行第一次实验之前,

我们的团队就开始
与公众和政府

合作,共同寻找解决方案,

以负责任地开发
和规范这项新技术。

这些讨论的结果之一
是筛选每个客户

和每个客户的 DNA 合成订单,

以确保病原体或毒素
不是坏人制造的,

也不是科学家意外制造的。

所有可疑订单
都会报告给 FBI

和其他相关
执法机构。

合成电池技术
将为下一次工业革命提供动力,

以应对
全球可持续性挑战的方式改变行业和经济。

可能性是无止境。

我的意思是,你可以想到

由可再生
生物基资源制成的衣服、

使用工程微生物的生物燃料运行的汽车

由可生物降解的聚合物制成的塑料

和定制疗法,
印在病人的床边。

创造合成细胞的巨大

努力使我们成为编写 DNA 的世界领导者。

在整个过程中,
我们找到了更快、

更准确、更可靠地编写 DNA 的方法。

由于
这些技术的稳健性,

我们发现我们可以
轻松实现流程自动化,

并将实验室工作流程
从科学家的

手中转移到机器上。

2013 年,我们制造了第一台 DNA 打印机。

我们称之为 BioXp。

我的团队和
世界各地的研究人员正在研究的许多应用程序中编写 DNA 是绝对必要的。

就在我们构建 BioXp 后不久

,我们收到了
关于中国 H7N9 禽流感恐慌的电子邮件。

一个中国科学家团队
已经分离出这种病毒,

对其 DNA 进行
了测序,并将 DNA 序列上传到了互联网上。

应美国政府的要求,
我们下载了 DNA 序列,

并在不到 12 小时内
将其打印在 BioXp 上。

我们在诺华的合作者

随后迅速开始
将合成 DNA 转化为流感疫苗。

与此同时,疾病预防控制中心使用
可追溯到 1940 年代的技术

,仍在等待病毒
从中国传来,

以便他们可以开始
以鸡蛋为基础的方法。

我们第一次
提前

为一种新的且具有潜在
危险的毒株开发了流感疫苗

,美国政府下令进行储备。

(掌声)

这是我开始
比以往任何时候都更欣赏

生物隐形传输的力量的时候。

(笑声) 很

自然地,考虑到这一点,

我们开始建造
一个生物传送器。

我们称之为 DBC。

这是
数字到生物转换器的缩写。

从预先制造的
短 DNA 片段开始的 BioXp 不同

,DBC 从数字化 DNA 代码开始

,并将该 DNA 代码
转换为生物实体,

例如 DNA、RNA、
蛋白质甚至病毒。

您可以将 BioXp
视为 DVD 播放器,

需要插入物理 DVD,

而 DBC 是 Netflix。

为了构建 DBC,

我的科学家团队与
软件和仪器

工程师合作,将多个实验室工作流程

整合到一个盒子中。

这包括
预测要构建什么 DNA 的软件算法,将 DNA

的 G、A、T 和 C
构建块连接成短片段的化学方法,


这些短片段拼接成更长片段的 Gibson

Assembly,以及将 DNA
转化为 其他生物实体,

例如蛋白质。

这是原型。

虽然不好看,
但是效果很好。

它制造治疗药物和疫苗。

曾经需要数周或数月的实验室工作流程

现在只需一到两天即可完成。

这一切都无需
任何人为干预

,只需
收到

一封可以
从世界任何地方发送的电子邮件即可激活。

我们喜欢
将 DBC 与传真机进行比较。

但是传真机
接收图像和文件

,而 DBC 接收生物材料。

现在,考虑一下
传真机是如何演变的。

与今天的传真机相比,1840 年代的原型无法辨认。

在 1980 年代,大多数人
还不知道传真机是什么

,即使知道了,


很难掌握

在世界另一端即刻复制图像的概念。

但如今
,传真机所做的一切

都集成在我们的智能手机上

,当然,我们认为这种快速
的数字信息交换是理所当然的。

这是我们今天的 DBC 的样子。

我们想象 DBC 的发展
方式与传真机相似。

我们正在努力缩小
仪器的尺寸

,我们正在努力
使基础技术

更可靠、更便宜、
更快、更准确。

合成 DNA 时,准确性非常重要,

因为 DNA 字母的单个变化

可能意味着
药物是否有效

或合成细胞是活还是死之间的差异。

DBC 可用于

从 DNA 开始的分布式药物制造。

世界上的每家医院
都可以使用 DBC 在床边

为患者打印个性化药物

我什至可以想象有一天
人们将

DBC 连接到他们的
家用电脑或智能手机上,

作为一种
下载处方的方式,

例如胰岛素或抗体疗法。

DBC
在世界各地的战略区域也很有价值

,可以快速应对疾病爆发。

例如,佐治亚州亚特兰大的 CDC

可以向
世界另一端的 DBC 发送流感疫苗说明,

那里的流感疫苗
就在第一线生产。

这种流感疫苗甚至可以
专门针对在该地区流行的流感毒株

进行定制。

以数字文件的形式发送疫苗,

而不是储存相同的
疫苗并将它们运送出去,

有望挽救数千人的生命。

当然,应用程序
可以想象的那么远。

不难想象
将 DBC 放在另一个星球上。

然后,地球上的科学家可以
向 DBC 发送数字指令,

以制造新药
或制造

产生氧气、食物、
燃料或建筑材料的合成生物,

作为使地球
更适合人类居住的一种手段。

(掌声)

随着数字信息
以光速传播,

将这些数字指令

从地球发送到火星只需几分钟,

但在航天器
上实际交付相同的样本需要几个月的

时间。

但就目前而言,我会满足
于在全球范围内传播新药,

完全自动化和按需,

从新出现的传染病中拯救生命,


为那些没有时间等待的人打印个性化的癌症药物。

谢谢你。

(掌声)