The era of personal DNA testing is here Sebastian Kraves

Imagine that you’re a pig farmer.

You live on a small farm
in the Philippines.

Your animals are your family’s
sole source of income –

as long as they’re healthy.

You know that any day,

one of your pigs can catch the flu,

the swine flu.

Living in tight quarters,
one pig coughing and sneezing

may soon lead to the next pig
coughing and sneezing,

until an outbreak of swine flu
has taken over your farm.

If it’s a bad enough virus,

the health of your herd may be gone
in the blink of an eye.

If you called in a veterinarian,

he or she would visit your farm
and take samples

from your pigs' noses and mouths.

But then they would have to drive
back into the city

to test those samples
in their central lab.

Two weeks later,
you’d hear back the results.

Two weeks may be just enough time
for infection to spread

and take away your way of life.

But it doesn’t have to be that way.

Today, farmers can take
those samples themselves.

They can jump right into the pen
and swab their pigs' noses and mouths

with a little filter paper,

place that little filter paper
in a tiny tube,

and mix it with some chemicals
that will extract genetic material

from their pigs' noses and mouths.

And without leaving their farms,

they take a drop of that genetic material

and put it into a little analyzer
smaller than a shoebox,

program it to detect DNA or RNA
from the swine flu virus,

and within one hour get back the results,
visualize the results.

This reality is possible

because today we’re living in the era
of personal DNA technology.

Every one of us can actually
test DNA ourselves.

DNA is the fundamental molecule
the carries genetic instructions

that help build the living world.

Humans have DNA.

Pigs have DNA.

Even bacteria and some
viruses have DNA too.

The genetic instructions encoded in DNA
inform how our bodies develop,

grow, function.

And in many cases, that same information
can trigger disease.

Your genetic information

is strung into a long and twisted
molecule, the DNA double helix,

that has over three billion letters,

beginning to end.

But the lines that carry
meaningful information

are usually very short –

a few dozen to several
thousand letters long.

So when we’re looking to answer
a question based on DNA,

we actually don’t need to read

all those three billion
letters, typically.

That would be like getting hungry at night

and having to flip through
the whole phone book

from cover to cover,

pausing at every line,

just to find the nearest pizza joint.

(Laughter)

Luckily, three decades ago,

humans started to invent tools

that can find any specific line
of genetic information.

These DNA machines are wonderful.

They can find any line in DNA.

But once they find it,

that DNA is still tiny, and surrounded
by so much other DNA,

that what these machines then do
is copy the target gene,

and one copy piles on top of another,

millions and millions
and millions of copies,

until that gene stands out
against the rest;

until we can visualize it,

interpret it, read it, understand it,

until we can answer:

Does my pig have the flu?

Or other questions buried in our own DNA:

Am I at risk of cancer?

Am I of Irish descent?

Is that child my son?

(Laughter)

This ability to make copies of DNA,
as simple as it sounds,

has transformed our world.

Scientists use it every day
to detect and address disease,

to create innovative medicines,

to modify foods,

to assess whether our food is safe to eat

or whether it’s contaminated
with deadly bacteria.

Even judges use the output
of these machines in court

to decide whether someone is innocent
or guilty based on DNA evidence.

The inventor of this DNA-copying technique

was awarded the Nobel Prize
in Chemistry in 1993.

But for 30 years,

the power of genetic analysis
has been confined to the ivory tower,

or bigwig PhD scientist work.

Well, several companies around the world

are working on making
this same technology accessible

to everyday people like the pig farmer,

like you.

I cofounded one of these companies.

Three years ago,

together with a fellow biologist
and friend of mine,

Zeke Alvarez Saavedra,

we decided to make personal DNA machines

that anyone could use.

Our goal was to bring DNA science
to more people in new places.

We started working in our basements.

We had a simple question:

What could the world look like

if everyone could analyze DNA?

We were curious,

as curious as you would have been
if I had shown you this picture in 1980.

(Laughter)

You would have thought, “Wow!

I can now call
my Aunt Glenda from the car

and wish her a happy birthday.

I can call anyone, anytime.

This is the future!”

Little did you know,

you would tap on that phone
to make dinner reservations

for you and Aunt Glenda
to celebrate together.

With another tap,
you’d be ordering her gift.

And yet one more tap,

and you’d be “liking”
Auntie Glenda on Facebook.

And all of this,
while sitting on the toilet.

(Laughter)

It is notoriously hard to predict
where new technology might take us.

And the same is true
for personal DNA technology today.

For example, I could never have imagined

that a truffle farmer, of all people,

would use personal DNA machines.

Dr. Paul Thomas grows
truffles for a living.

We see him pictured here,

holding the first UK-cultivated truffle
in his hands, on one of his farms.

Truffles are this delicacy

that stems from a fungus
growing on the roots of living trees.

And it’s a rare fungus.

Some species may fetch 3,000,
7,000, or more dollars per kilogram.

I learned from Paul

that the stakes for a truffle farmer
can be really high.

When he sources new truffles
to grow on his farms,

he’s exposed to the threat
of knockoffs –

truffles that look and feel
like the real thing,

but they’re of lower quality.

But even to a trained eye like Paul’s,

even when looked at under a microscope,

these truffles can pass for authentic.

So in order to grow
the highest quality truffles,

the ones that chefs
all over the world will fight over,

Paul has to use DNA analysis.

Isn’t that mind-blowing?

I bet you will never look
at that black truffle risotto again

without thinking of its genes.

(Laughter)

But personal DNA machines
can also save human lives.

Professor Ian Goodfellow is a virologist
at the University of Cambridge.

Last year he traveled to Sierra Leone.

When the Ebola outbreak
broke out in Western Africa,

he quickly realized that doctors there
lacked the basic tools

to detect and combat disease.

Results could take
up to a week to come back –

that’s way too long for the patients
and the families who are suffering.

Ian decided to move his lab
into Makeni, Sierra Leone.

Here we see Ian Goodfellow

moving over 10 tons of equipment
into a pop-up tent

that he would equip to detect
and diagnose the virus

and sequence it within 24 hours.

But here’s a surprise:

the same equipment that Ian could use
at his lab in the UK

to sequence and diagnose Ebola,

just wouldn’t work under these conditions.

We’re talking 35 Celsius heat
and over 90 percent humidity here.

But instead, Ian could use
personal DNA machines

small enough to be placed
in front of the air-conditioning unit

to keep sequencing the virus

and keep saving lives.

This may seem like
an extreme place for DNA analysis,

but let’s move on to an even
more extreme environment:

outer space.

Let’s talk about DNA analysis in space.

When astronauts live aboard
the International Space Station,

they’re orbiting the planet
250 miles high.

They’re traveling
at 17,000 miles per hour.

Picture that –

you’re seeing 15 sunsets
and sunrises every day.

You’re also living in microgravity,

floating.

And under these conditions,
our bodies can do funky things.

One of these things is that
our immune systems get suppressed,

making astronauts more prone to infection.

A 16-year-old girl,

a high school student from New York,
Anna-Sophia Boguraev,

wondered whether changes
to the DNA of astronauts

could be related
to this immune suppression,

and through a science competition
called “Genes In Space,”

Anna-Sophia designed an experiment
to test this hypothesis

using a personal DNA machine
aboard the International Space Station.

Here we see Anna-Sophia
on April 8, 2016, in Cape Canaveral,

watching her experiment launch
to the International Space Station.

That cloud of smoke is the rocket

that brought Anna-Sophia’s experiment
to the International Space Station,

where, three days later,

astronaut Tim Peake
carried out her experiment –

in microgravity.

Personal DNA machines are now
aboard the International Space Station,

where they can help monitor
living conditions

and protect the lives of astronauts.

A 16-year-old designing a DNA experiment

to protect the lives of astronauts

may seem like a rarity,
the mark of a child genius.

Well, to me, it signals
something bigger:

that DNA technology is finally
within the reach of every one of you.

A few years ago,

a college student armed
with a personal computer

could code an app,

an app that is now a social network
with more than one billion users.

Could we be moving into a world

of one personal DNA machine in every home?

I know families who are already
living in this reality.

The Daniels family, for example,

set up a DNA lab in the basement
of their suburban Chicago home.

This is not a family
made of PhD scientists.

This is a family like any other.

They just like to spend time together
doing fun, creative things.

By day, Brian is an executive
at a private equity firm.

At night and on weekends,
he experiments with DNA

alongside his kids, ages seven and nine,

as a way to explore the living world.

Last time I called them,

they were checking out homegrown produce
from the backyard garden.

They were testing tomatoes
that they had picked,

taking the flesh of their skin,
putting it in a test tube,

mixing it with chemicals to extract DNA

and then using their home DNA copier

to test those tomatoes
for genetically engineered traits.

For the Daniels family,

the personal DNA machine
is like the chemistry set

for the 21st century.

Most of us may not yet
be diagnosing genetic conditions

in our kitchen sinks

or doing at-home paternity testing.

(Laughter)

But we’ve definitely reached
a point in history

where every one of you could actually
get hands-on with DNA

in your kitchen.

You could copy, paste and analyze DNA

and extract meaningful
information from it.

And it’s at times like this
that profound transformation

is bound to happen;

moments when a transformative,
powerful technology

that was before limited
to a select few in the ivory tower,

finally becomes within the reach
of every one of us,

from farmers to schoolchildren.

Think about the moment

when phones stopped being
plugged into the wall by cords,

or when computers left the mainframe

and entered your home or your office.

The ripples of the personal DNA revolution

may be hard to predict,

but one thing is certain:

revolutions don’t go backwards,

and DNA technology is already spreading
faster than our imagination.

So if you’re curious,

get up close and personal
with DNA – today.

It is in our DNA to be curious.

(Laughter)

Thank you.

(Applause)

想象一下,你是一个养猪户。

你住在菲律宾的一个小农场

您的动物是您家庭的
唯一收入来源——

只要它们健康。

你知道,任何

一天,你的一头猪都会感染流感

,猪流感。

生活在狭小的空间里,
一头猪咳嗽和打喷嚏

可能很快会导致下一头猪
咳嗽和打喷嚏,

直到猪流感的爆发
席卷您的农场。

如果它是一种足够糟糕的病毒,

那么您的牛群的健康可能会
在眨眼之间消失。

如果您请来兽医,

他或她会访问您的农场

从您的猪的鼻子和嘴巴中采集样本。

但随后他们将不得不开车

城,
在他们的中心实验室测试这些样本。

两周后,
你会听到结果。

两周的时间可能足以
让感染传播

并夺走您的生活方式。

但不一定是这样。

今天,农民可以
自己采集这些样本。

他们可以直接跳进猪圈
,用小滤纸擦拭猪的鼻子和嘴巴

,将小滤纸

放在一个小试管中,

然后将其与一些化学物质混合,这些化学
物质会

从猪的鼻子和嘴巴中提取遗传物质。

在不离开农场的情况下,

他们将一滴遗传

物质放入一个比鞋盒还小的分析仪中

对其进行编程以检测
猪流感病毒的 DNA 或 RNA,

并在一小时内得到结果,
可视化 结果。

这个现实是可能的,

因为今天我们生活在
个人 DNA 技术的时代。

我们每个人实际上都可以
自己测试 DNA。

DNA 是
携带

有助于构建生物世界的遗传指令的基本分子。

人类有DNA。

猪有DNA。

甚至细菌和一些
病毒也有 DNA。

DNA 中编码的遗传指令
告知我们的身体如何发育、

生长和运作。

在许多情况下,同样的信息
会引发疾病。

你的遗传信息

被串成一个长而扭曲的
分子,即 DNA 双螺旋

,从头到尾有超过 30 亿个字母

但是携带
有意义信息

的行通常很短

——几十到
几千个字母长。

因此,当我们想要
回答一个基于 DNA 的问题时,通常

我们实际上不需要阅读

所有这 30 亿个
字母。

这就像晚上饿了

,不得不从头到尾
翻阅整个

电话簿,

在每一行都停下来,

只是为了找到最近的披萨店。

(笑声)

幸运的是,三十年前,

人类开始发明

可以找到任何特定
遗传信息线的工具。

这些 DNA 机器很棒。

他们可以在 DNA 中找到任何线。

但是一旦他们找到它,

那个 DNA 仍然很小,并且
被许多其他 DNA 包围,

这些机器所做的
就是复制目标基因

,一个拷贝堆积在另一个上面,

数百万
和数百万个拷贝,

直到 该基因
在其他基因中脱颖而出;

直到我们能够想象它、

解释它、阅读它、理解它,

直到我们能够回答:

我的猪得了流感吗?

或者其他隐藏在我们自己 DNA 中的问题:

我有患癌症的风险吗?

我是爱尔兰血统吗?

那个孩子是我儿子吗?

(笑声)

这种复制 DNA 的能力,
听起来很简单,

已经改变了我们的世界。

科学家们每天都用它
来检测和解决疾病

、创造创新药物

、改良食品

、评估我们的食物是否可以安全食用

或是否被
致命细菌污染。

甚至法官
也在法庭上使用这些机器的输出

来根据 DNA 证据来决定某人是无辜的
还是有罪的。

这种 DNA 复制技术的发明者在 1993

年获得了
诺贝尔化学奖。

但 30 年来,

基因分析的力量
一直局限于象牙塔,

或大人物博士科学家的工作。

嗯,世界各地的几家公司

正在努力让

像养猪户这样的普通人也能使用同样的技术,

就像你一样。

我共同创办了其中一家公司。

三年前,我们

与一位生物学家同事
和我的朋友

Zeke Alvarez Saavedra

一起决定制造

任何人都可以使用的个人 DNA 机器。

我们的目标是将 DNA 科学
带给新地方的更多人。

我们开始在地下室工作。

我们有一个简单的问题:

如果每个人都可以分析 DNA,世界会是什么样子?

我们很好奇,

如果我在 1980 年给你看这张照片,你会很好奇。

(笑声)

你会想,“哇!

我现在可以
从车上给格伦达阿姨打电话

,祝她生日快乐。

我 可以随时打电话给任何人。

这就是未来!”

你几乎不知道,

你会点击那部电话

为你和格伦达阿姨预订晚餐,
一起庆祝。

再轻点一下,
您就会订购她的礼物。

再轻点一下

,你就会
在 Facebook 上“喜欢”格伦达阿姨。

而这一切,都是
坐在马桶上。

(笑声

) 众所周知
,新技术会把我们带向何方是很难预测的。

今天的个人 DNA 技术也是如此。

例如,我无法想象

所有人中的松露种植者

会使用个人 DNA 机器。

保罗·托马斯博士以种植
松露为生。

我们在这里看到他在他的一个农场里,

手里拿着第一个英国种植的松露

松露是这种美味

,源于
生长在活树根部的真菌。

它是一种罕见的真菌。

有些物种
每公斤可能卖到 3,000、7,000 或更多美元。

我从保罗那里了解到,

松露农民的赌注
可能非常高。


他在农场寻找新的松露种植时,

他面临
着仿冒品的威胁——

松露看起来和感觉
都是真的,

但质量较低。

但即使对于像保罗这样受过训练的眼睛,

即使在显微镜下观察,

这些松露也可以被认为是正宗的。

因此,为了
种植最优质的松露,

全世界的厨师都会争相争夺,

Paul 必须使用 DNA 分析。

这不是令人兴奋吗?

我敢打赌,如果你不考虑它的基因,你将永远不会
再看那个黑松露烩饭

(笑声)

但是个人 DNA 机器
也可以拯救人类的生命。

Ian Goodfellow 教授是剑桥大学的病毒学家

去年他前往塞拉利昂。

当西非爆发埃博拉病毒时

他很快意识到那里的医生
缺乏

检测和抗击疾病的基本工具。

结果可能需要
长达一周的时间才能回来——


对于正在遭受痛苦的患者和家属来说太长了。

伊恩决定将他的实验室
搬到塞拉利昂的马克尼。

在这里,我们看到 Ian Goodfellow

将超过 10 吨的设备
移入一个弹出式帐篷

,他将配备该帐篷来检测
和诊断病毒

并在 24 小时内对其进行测序。

但令人惊讶的是

:Ian 可以
在他在英国的实验室中用于

对埃博拉病毒进行测序和诊断的相同设备

在这些条件下无法正常工作。

我们这里说的是 35 摄氏度的高温
和超过 90% 的湿度。

但取而代之的是,伊恩可以使用

足够小的个人 DNA 机器放置
在空调机组前面,

以继续对病毒进行测序

并继续挽救生命。

对于 DNA 分析来说,这似乎是一个极端的地方,

但让我们转向一个
更极端的环境:

外太空。

让我们谈谈太空中的 DNA 分析。

当宇航员住
在国际空间站上时,

他们正在围绕地球
250 英里高的轨道运行。

他们
以每小时 17,000 英里的速度行驶。

想象一下——

你每天看到 15 次日落
和日出。

你也生活在微重力环境中,

漂浮着。

在这些条件下,
我们的身体可以做一些时髦的事情。

其中之一是
我们的免疫系统受到抑制,

使宇航员更容易受到感染。

一位 16 岁的女孩,

来自纽约的高中生
Anna-Sophia Boguraev,

想知道
宇航员 DNA 的变化

是否
与这种免疫抑制有关,

并通过
名为“太空中的基因”的科学竞赛,

安娜 - 索菲亚设计了一个实验
来测试这个假设,

使用
国际空间站上的个人 DNA 机器。

在这里,我们看到了
2016 年 4 月 8 日在卡纳维拉尔角的 Anna-Sophia,

正在观看她
向国际空间站发射的实验。

那团烟雾就是

将安娜-索菲亚的实验
带到国际空间站

的火箭,三天后,

宇航员蒂姆·皮克

在微重力环境下进行了她的实验。

个人 DNA 机器现在
在国际空间站上

,它们可以帮助监测
生活条件

并保护宇航员的生命。

一个 16 岁的孩子设计了一项 DNA 实验

来保护宇航员的生命,这

可能看起来很稀有,
是儿童天才的标志。

嗯,对我来说,它标志着更重要的
事情

:DNA 技术
终于触手可及。

几年前,

一个拥有个人电脑的大学生

可以编写一个应用程序,

这个应用程序现在是一个
拥有超过 10 亿用户的社交网络。

我们能否进入一个

每个家庭都有一台个人 DNA 机器的世界?

我知道已经
生活在这个现实中的家庭。

例如,丹尼尔斯

一家在芝加哥郊区家的地下室建立了一个 DNA 实验室

这不是一个
由博士科学家组成的家庭。

这是一个和其他家庭一样的家庭。

他们只是喜欢花时间一起
做有趣的、有创意的事情。

白天,布莱恩是
一家私募股权公司的高管。

在晚上和周末,

和他 7 岁和 9 岁的孩子们一起进行 DNA 实验,

以此作为探索生活世界的一种方式。

上次我打电话给他们时,

他们正在检查
后院花园里的本土农产品。

他们正在测试
他们采摘的西红柿,

取出皮肉,
将其放入试管中,

将其与化学物质混合以提取 DNA

,然后使用他们的家用 DNA

复印机测试这些西红柿
的基因工程特征。

对于 Daniels 家族来说

,个人 DNA
机器就像

是 21 世纪的化学装置。

我们大多数人可能还没有

在我们的厨房水槽中诊断遗传状况

或进行家庭亲子鉴定。

(笑声)

但我们肯定已经达到
了历史

上的一个点,你们每个人都可以在厨房
里亲身体验 DNA

您可以复制、粘贴和分析 DNA

并从中提取有意义的
信息。

就在这样的时候
,深刻的

转变必然会发生;

当一种变革性的、
强大的

技术以前仅限
于象牙塔中的少数人时,

终于成为
我们每个人(

从农民到学童)的触手可及的时刻。

想想

电话不再
通过电线插入墙壁的那一刻,

或者计算机离开大型机

并进入您的家或办公室的那一刻。

个人 DNA 革命的涟漪

可能难以预测,

但有一点是肯定的:

革命不会倒退

,DNA 技术的传播速度已经
超出我们的想象。

因此,如果您好奇,请立即

与 DNA 近距离接触

好奇是我们的基因。

(笑声)

谢谢。

(掌声)