The twisting tale of DNA Judith Hauck

Transcriber: tom carter
Reviewer: Bedirhan Cinar

Geckos and grasshoppers, worms and watermelons,

elephants and Escherichia Coli,

man and mushroom. All so different in form and function,

but amazingly the same in how their form and function are determined.

First, all these organisms are made of one or more cells,

and every cell of every living thing on earth

contains all the information it takes

to create and duplicate and make variations of itself.

That information is stored in a very long but quite simple

double molecule called DNA,

or Deoxyribonucleic Acid.

And the DNA of every living organism is made of chains of four smaller molecules

called nucleotides. What dictates the difference between a man and a mushroom

is the sequence of these nucleotides in the long DNA chain.

The four differing nucleotide parts, called bases,

are made of a few carbon, oxygen, hydrogen, nitrogen and phosphorus atoms,

and the molecules look like this.

And each of these four bases is attached to an identical backbone molecule,

a sugar called deoxyribose - the “D” in DNA - and a phosphate group.

Let’s simplify these nucleotides and show them like this.

So, a single sequence of nucleotides joined by their common sugars would look like this.

And the DNA molecule where such sequences are stored looks like this.

But how does a simple molecule dictate the form and function of millions of different living things?

You can think of DNA as a great library of information,

information that is used to do one thing and one thing only:

direct the building of different protein molecules.

And it’s the proteins that build the cells and keep them functioning

and changing and reproducing. Here’s where the familiar word ‘gene’ comes in.

If your DNA is a library of information, a gene is a book in that library.

A gene is a segment of the DNA molecule.

Let’s say your body needs a particular protein, like insulin.

To get it, some of your cells send a protein signal through the bloodstream

to the cells in your pancreas, where insulin is made.

That signal protein tells other proteins in the cell’s nuclei

to open up a part of the DNA double helix, the insulin gene,

and start making insulin proteins.

As soon as enough insulin has been produced,

another signal protein comes to the pancreas' cells that tells them to stop making insulin.

It’s like looking up a book in the DNA library about insulin,

and then putting it back when you’re done.

There are genes in DNA for visible and invisible things that make up your body,

like genes for eye color, protein pigments, for skin color,

for hair color, for stopping and starting bone growth,

for your blood type, for how many fingers or arms and legs you have,

for proteins that influence how long you live.

Your DNA probably contains between 25 thousand and 40 thousand genes,

while the DNA of a worm or a plant or a fruit fly

contains about 12 thousand to 20 thousand genes.

Some of those genes have quite different sequences of nucleotides than yours,

and some are similar to yours.

Though it happens infrequently,

our own nucleotide sequences can change

as the result of spontaneous or environmental damage

which might remove or shift a nucleotide position.

This changes the gene involved, and can then change the protein.

Most of these changes, called mutations,

have very little effect on the organism or its descendants.

some are mildly damaging,

and a few can make the organism better-suited to its environment.

It is these tiny changes in DNA gene sequences, happening over millions of years,

that create the differences among living organisms, from geckos to grasshoppers.

worms to watermelons, elephants to Escherichia Coli, and man to mushroom.

抄写员:汤姆·卡特
审稿人:Bedirhan Cinar

壁虎和蚱蜢、蠕虫和西瓜、

大象和大肠杆菌、

人和蘑菇。 所有这些在形式和功能上都如此不同,

但它们的形式和功能的确定方式却惊人地相同。

首先,所有这些生物都是由一个或多个细胞组成的,

地球上每一种生物的每个细胞都

包含

创造、复制和变异自身所需的所有信息。

该信息存储在一个非常长但非常简单的

双分子中,称为 DNA

或脱氧核糖核酸。

每个生物体的 DNA 都是由四个称为核苷酸的小分子链组成的

。 决定人和蘑菇之间区别的

是这些核苷酸在长 DNA 链中的序列。

四个不同的核苷酸部分,称为碱基

,由几个碳、氧、氢、氮和磷原子组成

,分子看起来像这样。

这四个碱基中的每一个都连接到一个相同的骨架分子,

一种称为脱氧核糖的糖——DNA中的“D”——和一个磷酸基团。

让我们简化这些核苷酸并像这样展示它们。

因此,由它们的共同糖连接的单个核苷酸序列看起来像这样。

存储这些序列的DNA分子看起来像这样。

但是一个简单的分子是如何决定数百万种不同生物的形式和功能的呢?

您可以将 DNA 视为一个巨大的信息库,这些

信息用于做一件事且只做一件事:

指导不同蛋白质分子的构建。

正是这些蛋白质构建了细胞并保持它们的功能

、变化和繁殖。 这就是熟悉的“基因”一词的用武之地。

如果您的 DNA 是一个信息库,那么基因就是该库中的一本书。

基因是 DNA 分子的一个片段。

假设你的身体需要一种特殊的蛋白质,比如胰岛素。

为了得到它,你的一些细胞通过血液向你的胰腺细胞发送一个蛋白质信号

,在那里制造胰岛素。

该信号蛋白告诉细胞核中的其他蛋白质

打开DNA双螺旋的一部分,即胰岛素基因,

并开始制造胰岛素蛋白。

一旦产生了足够的胰岛素,

另一种信号蛋白就会到达胰腺细胞,告诉它们停止制造胰岛素。

这就像在 DNA 图书馆中查找一本关于胰岛素的书,

然后在完成后将其放回原处。

DNA 中有一些基因决定构成你身体的可见和不可见的东西,

比如眼睛颜色、蛋白质色素、皮肤颜色

、头发颜色、停止和开始骨骼生长

、血型、手指或手指数量等基因。 你有胳膊和腿,

因为蛋白质会影响你的寿命。

你的 DNA 可能包含 25,000 到 40,000 个基因,

而蠕虫、植物或果蝇的 DNA

包含大约 12,000 到 20,000 个基因。

其中一些基因的核苷酸序列与您的完全不同

,有些与您的相似。

尽管这种情况很少发生,但

我们自己的核苷酸序列可能

会因自发或环境损害

而发生变化,这可能会去除或改变核苷酸位置。

这会改变所涉及的基因,然后可以改变蛋白质。

大多数这些变化,称为突变,

对生物体或其后代几乎没有影响。

有些具有轻微的破坏性

,有些可以使有机体更适合其环境。

正是这些 DNA 基因序列的微小变化发生了数百万年

,造成了生物体之间的差异,从壁虎到蚱蜢。

蠕虫到西瓜,大象到大肠杆菌,人类到蘑菇。