What happens when your DNA is damaged Monica Menesini

The DNA in just one of your cells

gets damaged tens of thousands
of times per day.

Multiply that by your body’s
hundred trillion or so cells,

and you’ve got a quintillion
DNA errors everyday.

And because DNA provides the blueprint

for the proteins
your cells need to function,

damage causes serious problems,
such as cancer.

The errors come in different forms.

Sometimes nucleotides,
DNA’s building blocks, get damaged,

other times nucleotides
get matched up incorrectly,

causing mutations,

and nicks in one or both strands
can interfere with DNA replication,

or even cause sections
of DNA to get mixed up.

Fortunately, your cells have ways
of fixing most of these problems

most of the time.

These repair pathways
all rely on specialized enzymes.

Different ones respond
to different types of damage.

One common error is base mismatches.

Each nucleotide contains a base,

and during DNA replication,

the enzyme DNA polymerase
is supposed to bring in the right partner

to pair with every base
on each template strand.

Adenine with thymine,
and guanine with cytosine.

But about once every
hundred thousand additions,

it makes a mistake.

The enzyme catches
most of these right away,

and cuts off a few nucleotides
and replaces them with the correct ones.

And just in case it missed a few,

a second set of proteins
comes behind it to check.

If they find a mismatch,

they cut out the incorrect nucleotide
and replace it.

This is called mismatch repair.

Together, these two systems reduce
the number of base mismatch errors

to about one in one billion.

But DNA can get damaged
after replication, too.

Lots of different molecules
can cause chemical changes to nucleotides.

Some of these come
from environmental exposure,

like certain compounds in tobacco smoke.

But others are molecules that are found
in cells naturally,

like hydrogen peroxide.

Certain chemical changes are so common

that they have specific enzymes assigned
to reverse the damage.

But the cell also has more general
repair pathways.

If just one base is damaged,

it can usually be fixed by a process
called base excision repair.

One enzyme snips out the damaged base,

and other enzymes come in to trim around
the site and replace the nucleotides.

UV light can cause damage
that’s a little harder to fix.

Sometimes, it causes two adjacent
nucleotides to stick together,

distorting the DNA’s double helix shape.

Damage like this requires
a more complex process

called nucleotide excision repair.

A team of proteins removes a long strand
of 24 or so nucleotides,

and replaces them with fresh ones.

Very high frequency radiation,
like gamma rays and x-rays,

cause a different kind of damage.

They can actually sever one
or both strands of the DNA backbone.

Double strand breaks
are the most dangerous.

Even one can cause cell death.

The two most common pathways
for repairing double strand breaks

are called homologous recombination
and non-homologous end joining.

Homologous recombination uses an undamaged
section of similar DNA as a template.

Enzymes interlace the damaged
and undamgaed strands,

get them to exchange sequences
of nucleotides,

and finally fill in the missing gaps

to end up with two complete
double-stranded segments.

Non-homologous end joining,
on the other hand,

doesn’t rely on a template.

Instead, a series of proteins
trims off a few nucleotides

and then fuses the broken ends
back together.

This process isn’t as accurate.

It can cause genes to get mixed up,
or moved around.

But it’s useful when
sister DNA isn’t available.

Of course, changes to DNA
aren’t always bad.

Beneficial mutations
can allow a species to evolve.

But most of the time,
we want DNA to stay the same.

Defects in DNA repair are associated
with premature aging

and many kinds of cancer.

So if you’re looking for
a fountain of youth,

it’s already operating in your cells,

billions and billions of times a day.

每天只有一个细胞中的 DNA

会受损
数万次。

将它乘以你身体的
大约 100 万亿个细胞

,你每天就会有 500 亿个
DNA 错误。

由于 DNA 为

您的细胞发挥功能所需的蛋白质提供了蓝图,因此

损伤会导致严重的问题,
例如癌症。

错误以不同的形式出现。

有时核苷酸(
DNA 的组成部分)会受损

,有时
核苷酸匹配不正确,

导致突变,

一条或两条链中的缺口
会干扰 DNA 复制,

甚至导致
DNA 片段混淆。

幸运的是,您的细胞在
大多数情况下都有解决这些

问题的方法。

这些修复途径
都依赖于专门的酶。

不同的
对不同类型的损害作出反应。

一个常见的错误是碱基不匹配。

每个核苷酸都包含一个碱基

,在 DNA 复制过程中

,DNA
聚合酶应该引入正确的

伴侣,与
每个模板链上的每个碱基配对。

腺嘌呤与胸腺嘧啶
,鸟嘌呤与胞嘧啶。

但是大约每
十万添加一次,

它就会出错。

这种酶会立即捕获
其中的大部分,

并切断一些核苷酸
并用正确的核苷酸替换它们。

万一它错过了一些

,第二组蛋白质
会在它后面进行检查。

如果他们发现错配,

他们会剪掉不正确的核苷酸
并替换它。

这称为错配修复。

这两个系统一起
将碱基错配错误的数量减少

到大约十亿分之一。


复制后 DNA 也会受损。

许多不同的分子
会引起核苷酸的化学变化。

其中一些
来自环境暴露,

例如烟草烟雾中的某些化合物。

但其他分子是天然存在于细胞中的分子

如过氧化氢。

某些化学变化非常普遍

,以至于它们具有特定的酶
来逆转损伤。

但细胞也有更一般的
修复途径。

如果只有一个碱基受损,

通常可以通过
称为碱基切除修复的过程进行修复。

一种酶会剪掉受损的碱基,

而其他酶会进入
该位点周围并替换核苷酸。

紫外线会造成
更难修复的损坏。

有时,它会导致两个相邻的
核苷酸粘在一起,从而

扭曲 DNA 的双螺旋形状。

像这样的损伤需要
一个更复杂的过程,

称为核苷酸切除修复。

一组蛋白质去除了大约
24 个核苷酸的长链,

并用新鲜的核苷酸代替它们。

非常高频的辐射,
如伽马射线和 X 射线,

会造成不同类型的损害。

它们实际上可以切断一条
或两条 DNA 主链。

双链断裂
是最危险的。

即使是一个也可能导致细胞死亡。 修复双链断裂

的两种最常见的途径

称为同源重组
和非同源末端连接。

同源重组使用相似 DNA 的未损坏
部分作为模板。

酶将受损
和未受损的链交织在一起,

让它们交换
核苷酸序列

,最后填补缺失的间隙

,最终形成两个完整
的双链片段。 另一方面,

非同源末端连接

不依赖于模板。

相反,一系列蛋白质会
修剪掉一些核苷酸

,然后将断裂的末端
重新融合在一起。

这个过程并不准确。

它可能导致基因混淆
或移动。

但当姐妹 DNA 不可用时,它很有
用。

当然,DNA 的改变
并不总是坏事。

有益的突变
可以让一个物种进化。

但大多数时候,
我们希望 DNA 保持不变。

DNA修复缺陷
与过早衰老

和多种癌症有关。

因此,如果您正在
寻找青春之泉,

它已经在您的细胞中运行,

每天数十亿次。