What really happens when you mix medications Russ Altman

So you go to the doctor
and get some tests.

The doctor determines
that you have high cholesterol

and you would benefit
from medication to treat it.

So you get a pillbox.

You have some confidence,

your physician has some confidence
that this is going to work.

The company that invented it did
a lot of studies, submitted it to the FDA.

They studied it very carefully,
skeptically, they approved it.

They have a rough idea of how it works,

they have a rough idea
of what the side effects are.

It should be OK.

You have a little more
of a conversation with your physician

and the physician is a little worried
because you’ve been blue,

haven’t felt like yourself,

you haven’t been able to enjoy things
in life quite as much as you usually do.

Your physician says, “You know,
I think you have some depression.

I’m going to have to give
you another pill.”

So now we’re talking
about two medications.

This pill also – millions
of people have taken it,

the company did studies,
the FDA looked at it – all good.

Think things should go OK.

Think things should go OK.

Well, wait a minute.

How much have we studied
these two together?

Well, it’s very hard to do that.

In fact, it’s not traditionally done.

We totally depend on what we call
“post-marketing surveillance,”

after the drugs hit the market.

How can we figure out
if bad things are happening

between two medications?

Three? Five? Seven?

Ask your favorite person
who has several diagnoses

how many medications they’re on.

Why do I care about this problem?

I care about it deeply.

I’m an informatics and data science guy
and really, in my opinion,

the only hope – only hope –
to understand these interactions

is to leverage lots
of different sources of data

in order to figure out
when drugs can be used together safely

and when it’s not so safe.

So let me tell you a data science story.

And it begins with my student Nick.

Let’s call him “Nick,”
because that’s his name.

(Laughter)

Nick was a young student.

I said, “You know, Nick, we have
to understand how drugs work

and how they work together
and how they work separately,

and we don’t have a great understanding.

But the FDA has made available
an amazing database.

It’s a database of adverse events.

They literally put on the web –

publicly available, you could all
download it right now –

hundreds of thousands
of adverse event reports

from patients, doctors,
companies, pharmacists.

And these reports are pretty simple:

it has all the diseases
that the patient has,

all the drugs that they’re on,

and all the adverse events,
or side effects, that they experience.

It is not all of the adverse events
that are occurring in America today,

but it’s hundreds and hundreds
of thousands of drugs.

So I said to Nick,

“Let’s think about glucose.

Glucose is very important,
and we know it’s involved with diabetes.

Let’s see if we can understand
glucose response.

I sent Nick off. Nick came back.

“Russ,” he said,

“I’ve created a classifier that can
look at the side effects of a drug

based on looking at this database,

and can tell you whether that drug
is likely to change glucose or not.”

He did it. It was very simple, in a way.

He took all the drugs
that were known to change glucose

and a bunch of drugs
that don’t change glucose,

and said, “What’s the difference
in their side effects?

Differences in fatigue? In appetite?
In urination habits?”

All those things conspired
to give him a really good predictor.

He said, “Russ, I can predict
with 93 percent accuracy

when a drug will change glucose.”

I said, “Nick, that’s great.”

He’s a young student,
you have to build his confidence.

“But Nick, there’s a problem.

It’s that every physician in the world
knows all the drugs that change glucose,

because it’s core to our practice.

So it’s great, good job,
but not really that interesting,

definitely not publishable.”

(Laughter)

He said, “I know, Russ.
I thought you might say that.”

Nick is smart.

“I thought you might say that,
so I did one other experiment.

I looked at people in this database
who were on two drugs,

and I looked for signals similar,
glucose-changing signals,

for people taking two drugs,

where each drug alone
did not change glucose,

but together I saw a strong signal.”

And I said, “Oh! You’re clever.
Good idea. Show me the list.”

And there’s a bunch of drugs,
not very exciting.

But what caught my eye
was, on the list there were two drugs:

paroxetine, or Paxil, an antidepressant;

and pravastatin, or Pravachol,
a cholesterol medication.

And I said, “Huh. There are millions
of Americans on those two drugs.”

In fact, we learned later,

15 million Americans on paroxetine
at the time, 15 million on pravastatin,

and a million, we estimated, on both.

So that’s a million people

who might be having some problems
with their glucose

if this machine-learning mumbo jumbo
that he did in the FDA database

actually holds up.

But I said, “It’s still not publishable,

because I love what you did
with the mumbo jumbo,

with the machine learning,

but it’s not really standard-of-proof
evidence that we have.”

So we have to do something else.

Let’s go into the Stanford
electronic medical record.

We have a copy of it
that’s OK for research,

we removed identifying information.

And I said, “Let’s see if people
on these two drugs

have problems with their glucose.”

Now there are thousands
and thousands of people

in the Stanford medical records
that take paroxetine and pravastatin.

But we needed special patients.

We needed patients who were on one of them
and had a glucose measurement,

then got the second one and had
another glucose measurement,

all within a reasonable period of time –
something like two months.

And when we did that,
we found 10 patients.

However, eight out of the 10
had a bump in their glucose

when they got the second P –
we call this P and P –

when they got the second P.

Either one could be first,
the second one comes up,

glucose went up
20 milligrams per deciliter.

Just as a reminder,

you walk around normally,
if you’re not diabetic,

with a glucose of around 90.

And if it gets up to 120, 125,

your doctor begins to think
about a potential diagnosis of diabetes.

So a 20 bump – pretty significant.

I said, “Nick, this is very cool.

But, I’m sorry, we still
don’t have a paper,

because this is 10 patients
and – give me a break –

it’s not enough patients.”

So we said, what can we do?

And we said, let’s call our friends
at Harvard and Vanderbilt,

who also – Harvard in Boston,
Vanderbilt in Nashville,

who also have electronic
medical records similar to ours.

Let’s see if they can find
similar patients

with the one P, the other P,
the glucose measurements

in that range that we need.

God bless them, Vanderbilt
in one week found 40 such patients,

same trend.

Harvard found 100 patients, same trend.

So at the end, we had 150 patients
from three diverse medical centers

that were telling us that patients
getting these two drugs

were having their glucose bump
somewhat significantly.

More interestingly,
we had left out diabetics,

because diabetics already
have messed up glucose.

When we looked
at the glucose of diabetics,

it was going up 60 milligrams
per deciliter, not just 20.

This was a big deal, and we said,
“We’ve got to publish this.”

We submitted the paper.

It was all data evidence,

data from the FDA, data from Stanford,

data from Vanderbilt, data from Harvard.

We had not done a single real experiment.

But we were nervous.

So Nick, while the paper
was in review, went to the lab.

We found somebody
who knew about lab stuff.

I don’t do that.

I take care of patients,
but I don’t do pipettes.

They taught us how to feed mice drugs.

We took mice and we gave them
one P, paroxetine.

We gave some other mice pravastatin.

And we gave a third group
of mice both of them.

And lo and behold, glucose went up
20 to 60 milligrams per deciliter

in the mice.

So the paper was accepted
based on the informatics evidence alone,

but we added a little note at the end,

saying, oh by the way,
if you give these to mice, it goes up.

That was great, and the story
could have ended there.

But I still have six and a half minutes.

(Laughter)

So we were sitting around
thinking about all of this,

and I don’t remember who thought
of it, but somebody said,

“I wonder if patients
who are taking these two drugs

are noticing side effects
of hyperglycemia.

They could and they should.

How would we ever determine that?”

We said, well, what do you do?

You’re taking a medication,
one new medication or two,

and you get a funny feeling.

What do you do?

You go to Google

and type in the two drugs you’re taking
or the one drug you’re taking,

and you type in “side effects.”

What are you experiencing?

So we said OK,

let’s ask Google if they will share
their search logs with us,

so that we can look at the search logs

and see if patients are doing
these kinds of searches.

Google, I am sorry to say,
denied our request.

So I was bummed.

I was at a dinner with a colleague
who works at Microsoft Research

and I said, “We wanted to do this study,

Google said no, it’s kind of a bummer.”

He said, “Well, we have
the Bing searches.”

(Laughter)

Yeah.

That’s great.

Now I felt like I was –

(Laughter)

I felt like I was talking to Nick again.

He works for one of the largest
companies in the world,

and I’m already trying
to make him feel better.

But he said, “No, Russ –
you might not understand.

We not only have Bing searches,

but if you use Internet Explorer
to do searches at Google,

Yahoo, Bing, any …

Then, for 18 months, we keep that data
for research purposes only.”

I said, “Now you’re talking!”

This was Eric Horvitz,
my friend at Microsoft.

So we did a study

where we defined 50 words
that a regular person might type in

if they’re having hyperglycemia,

like “fatigue,” “loss of appetite,”
“urinating a lot,” “peeing a lot” –

forgive me, but that’s one
of the things you might type in.

So we had 50 phrases
that we called the “diabetes words.”

And we did first a baseline.

And it turns out
that about .5 to one percent

of all searches on the Internet
involve one of those words.

So that’s our baseline rate.

If people type in “paroxetine”
or “Paxil” – those are synonyms –

and one of those words,

the rate goes up to about two percent
of diabetes-type words,

if you already know
that there’s that “paroxetine” word.

If it’s “pravastatin,” the rate goes up
to about three percent from the baseline.

If both “paroxetine” and “pravastatin”
are present in the query,

it goes up to 10 percent,

a huge three- to four-fold increase

in those searches with the two drugs
that we were interested in,

and diabetes-type words
or hyperglycemia-type words.

We published this,

and it got some attention.

The reason it deserves attention

is that patients are telling us
their side effects indirectly

through their searches.

We brought this
to the attention of the FDA.

They were interested.

They have set up social media
surveillance programs

to collaborate with Microsoft,

which had a nice infrastructure
for doing this, and others,

to look at Twitter feeds,

to look at Facebook feeds,

to look at search logs,

to try to see early signs that drugs,
either individually or together,

are causing problems.

What do I take from this?
Why tell this story?

Well, first of all,

we have now the promise
of big data and medium-sized data

to help us understand drug interactions

and really, fundamentally, drug actions.

How do drugs work?

This will create and has created
a new ecosystem

for understanding how drugs work
and to optimize their use.

Nick went on; he’s a professor
at Columbia now.

He did this in his PhD
for hundreds of pairs of drugs.

He found several
very important interactions,

and so we replicated this

and we showed that this
is a way that really works

for finding drug-drug interactions.

However, there’s a couple of things.

We don’t just use pairs
of drugs at a time.

As I said before, there are patients
on three, five, seven, nine drugs.

Have they been studied with respect
to their nine-way interaction?

Yes, we can do pair-wise,
A and B, A and C, A and D,

but what about A, B, C,
D, E, F, G all together,

being taken by the same patient,

perhaps interacting with each other

in ways that either makes them
more effective or less effective

or causes side effects
that are unexpected?

We really have no idea.

It’s a blue sky, open field
for us to use data

to try to understand
the interaction of drugs.

Two more lessons:

I want you to think about the power
that we were able to generate

with the data from people who had
volunteered their adverse reactions

through their pharmacists,
through themselves, through their doctors,

the people who allowed the databases
at Stanford, Harvard, Vanderbilt,

to be used for research.

People are worried about data.

They’re worried about their privacy
and security – they should be.

We need secure systems.

But we can’t have a system
that closes that data off,

because it is too rich of a source

of inspiration, innovation and discovery

for new things in medicine.

And the final thing I want to say is,

in this case we found two drugs
and it was a little bit of a sad story.

The two drugs actually caused problems.

They increased glucose.

They could throw somebody into diabetes

who would otherwise not be in diabetes,

and so you would want to use
the two drugs very carefully together,

perhaps not together,

make different choices
when you’re prescribing.

But there was another possibility.

We could have found
two drugs or three drugs

that were interacting in a beneficial way.

We could have found new effects of drugs

that neither of them has alone,

but together, instead
of causing a side effect,

they could be a new and novel treatment

for diseases that don’t have treatments

or where the treatments are not effective.

If we think about drug treatment today,

all the major breakthroughs –

for HIV, for tuberculosis,
for depression, for diabetes –

it’s always a cocktail of drugs.

And so the upside here,

and the subject for a different
TED Talk on a different day,

is how can we use the same data sources

to find good effects
of drugs in combination

that will provide us new treatments,

new insights into how drugs work

and enable us to take care
of our patients even better?

Thank you very much.

(Applause)

所以你去看医生
,做一些检查。

医生
确定你有高胆固醇

,你会
从药物治疗中受益。

所以你得到一个药盒。

你有一定的信心,

你的医生有信心
这会奏效。

发明它的公司做
了很多研究,把它提交给了 FDA。

他们非常仔细地研究了它,
怀疑地,他们批准了它。

他们对它的工作原理

有一个粗略的了解
,他们对副作用是什么有一个粗略的了解。

应该没问题。


与您的医生进行了更多的交谈,

而医生有点担心,
因为您一直很沮丧

,感觉不像自己,

您无法像
往常一样享受生活中的事物 .

你的医生说:“你知道,
我认为你有一些抑郁症。

我将不得不
再给你一颗药丸。”

所以现在我们正在
谈论两种药物。

这种药丸也——
数百万人服用过

,公司进行了研究
,FDA 研究了它——一切都很好。

认为事情应该会顺利。

认为事情应该会顺利。

好吧,等一下。

我们一起研究了
这两者多少?

嗯,很难做到这一点。

事实上,传统上并没有这样做。 在药物上市后,

我们完全依赖于我们所谓的
“上市后监督”

我们如何才能确定两种药物之间
是否发生了不好的事情

三? 五? 七?

询问您最喜欢的
有多种诊断的人,

他们正在服用多少药物。

我为什么要关心这个问题?

我非常关心它。

我是一名信息学和数据科学专家
,在我看来,理解这些相互作用

的唯一希望——唯一希望——

是利用
许多不同的数据来源

,以确定
何时可以安全地一起使用药物

当它不那么安全的时候。

所以让我告诉你一个数据科学的故事。

它从我的学生尼克开始。

让我们称他为“尼克”,
因为那是他的名字。

(笑声)

尼克是个年轻的学生。

我说,“你知道,尼克,我们
必须了解药物是如何发挥作用的

,它们是如何协同作用的,以及它们是
如何单独发挥作用的

,我们并没有很好的理解。

但 FDA 提供了
一个惊人的数据库。

它是一个数据库 不良事件。

他们确实在网上——

公开可用,你们现在都可以
下载——

来自患者、医生、
公司、药剂师的数十万份不良事件报告

。这些报告非常简单:

它包含所有 患者所患的疾病

他们服用的所有药物

,以及他们所经历的所有不良事件或副作用。

这不是
当今美国发生的所有不良事件,

而是成百上千的不良事件
数千种药物。

所以我对尼克说,

“让我们想想葡萄糖。

葡萄糖非常重要
,我们知道它与糖尿病有关。

让我们看看我们是否能理解
葡萄糖反应。

我把尼克送走了。 尼克回来了。

“Russ,”他说,

“我创建了一个分类器,可以

根据查看该数据库来查看药物的副作用,

并可以告诉您该药物
是否可能改变葡萄糖。”

他做到了。 在某种程度上,这很简单。

他把
所有已知的改变葡萄糖

的药物和一堆
不改变葡萄糖的药物都吃了,

然后说:“
它们的副作用有什么

不同?疲劳有什么不同?食欲有多大
?排尿习惯有什么不同?”

所有这些事情
共同为他提供了一个非常好的预测器。

他说:“Russ,我可以
以 93% 的准确率预测

药物何时会改变葡萄糖。”

我说:“尼克,那太好了。”

他是一个年轻的学生,
你必须建立他的信心。

“但是尼克,有一个问题

。世界上的每个医生
都知道所有改变葡萄糖的药物,

因为它是我们实践的核心。

所以这很好,很好,
但不是那么有趣,

绝对不能发表。”

(笑声)

他说:“我知道,拉斯。
我以为你会这么说。”

尼克很聪明。

“我想你可能会这么说,
所以我做了另一个实验。

我查看了这个数据库
中服用两种药物的人

,我寻找类似的信号,
葡萄糖变化信号,

对于服用两种药物的人,

其中每种药物单独使用
没有改变葡萄糖,

但我一起看到了一个强烈的信号。”

我说,“哦!你很聪明。
好主意。给我看看清单。”

还有一堆药,
不是很刺激。

但引起我注意的
是,名单上有两种药物:

帕罗西汀,或帕罗西汀,一种抗抑郁药;

和普伐他汀或普伐他汀,
一种胆固醇药物。

我说,“嗯。有数
百万美国人服用这两种药物。”

事实上,我们后来才知道,当时有

1500 万美国人在服用
帕罗西汀,1500 万人在服用普伐他汀

,我们估计有 100 万人服用这两种药物。

因此,

如果
他在 FDA 数据库中所做的这种机器学习的庞然大物

真的站得住脚,那么就有一百万人可能会遇到葡萄糖问题。

但我说,“它仍然不能发表,

因为我喜欢你用机器学习做
的那些笨拙的东西

但这
并不是我们所拥有的真正标准的证据。”

所以我们必须做点别的。

让我们进入斯坦福
电子病历。

我们有一份
可供研究的副本,

我们删除了识别信息。

我说,“让我们看看
服用这两种药物的

人的血糖是否有问题。”

现在

,斯坦福医疗记录
中有成千上万的人服用帕罗西汀和普伐他汀。

但是我们需要特殊的病人。

我们需要在
其中一个进行血糖测量的患者,

然后让第二
个患者进行血糖测量,

所有这些都在合理的时间内 -
大约两个月。

当我们这样做时,
我们发现了 10 名患者。

然而,当他们得到第二个 P 时,10 人中有 8
人的葡萄糖升高

了——
我们称之为 P 和 P——

当他们得到第二个 P 时。

任何一个都可能是第一个
,第二个出现,

葡萄糖去了
每分升增加 20 毫克。

提醒

一下,
如果您没有糖尿病,您可以正常四处走动

,血糖约为

90。如果达到 120、125,

您的医生开始
考虑可能诊断出糖尿病。

所以一个 20 的碰撞 - 非常重要。

我说:“尼克,这很酷。

但是,我很抱歉,我们还
没有论文,

因为这是 10 名患者,
而且——让我休息一下——

这还不够患者。”

所以我们说,我们能做什么?

我们说,让我们打电话给
哈佛和范德比尔特的朋友,

他们也——波士顿的哈佛
,纳什维尔的范德比尔特,

他们也有
与我们类似的电子病历。

让我们看看他们是否可以找到
类似的患者

,其中一个 P,另一个 P
,葡萄糖测量值

在我们需要的那个范围内。

上帝保佑他们,范德比尔特
在一周内发现了 40 名这样的患者,

趋势相同。

哈佛发现了 100 名患者,趋势相同。

所以最后,我们有
来自三个不同医疗中心

的 150 名患者告诉我们,服用
这两种药物的

患者的血糖升高
有些显着。

更有趣的是,
我们忽略了糖尿病患者,

因为糖尿病患者
已经弄乱了葡萄糖。

当我们查看
糖尿病患者的血糖时,

它每分升增加了 60 毫克
,而不仅仅是 20 毫克。

这是一件大事,我们说,
“我们必须发表这个。”

我们提交了论文。

这都是数据证据,

来自 FDA 的数据,来自斯坦福大学的

数据,来自范德比尔特大学的数据,来自哈佛的数据。

我们没有做过一个真正的实验。

但是我们很紧张。

所以尼克在
论文审查期间去了实验室。

我们找到了
知道实验室东西的人。

我不那样做。

我照顾病人,
但我不做移液器。

他们教我们如何给老鼠喂药。

我们拿了老鼠,给了它们
一种 P,帕罗西汀。

我们给其他一些老鼠服用了普伐他汀。

我们给了第三
组老鼠。

你瞧,老鼠体内的葡萄糖
每分升增加了 20 到 60 毫克

所以这篇论文
仅仅基于信息学证据就被接受了,

但是我们在最后加了一点注释,

说,哦,顺便说一句,
如果你把这些给老鼠,它就会上升。

那太好了,故事本
可以到此结束。

但我还有六分半钟。

(笑声)

所以我们坐在那里
想着这一切

,我不记得是谁想到
的,但有人说,

“我想知道
服用这两种药物的患者

是否注意到
高血糖的副作用。

他们可以而且 他们应该。

我们怎么能确定呢?

我们说,好吧,你是做什么的?

你正在服用一种药物,
一种或两种新的药物

,你会有一种有趣的感觉。

你做什么工作?

你去谷

歌输入你正在服用的两种药物
或你正在服用的一种药物,

然后输入“副作用”。

你正在经历什么?

所以我们说好的,

让我们问问谷歌他们是否会
与我们分享他们的搜索日志,

这样我们就可以查看搜索日志

,看看患者是否在进行
此类搜索。

很遗憾,谷歌
拒绝了我们的请求。

所以我很沮丧。

我和一位在微软研究院工作的同事共进晚餐

,我说:“我们想做这项研究,

谷歌拒绝了,这有点令人失望。”

他说,“嗯,我们
有 Bing 搜索。”

(笑声)

是的。

那太棒了。

现在我觉得我是——

(笑声)

我觉得我又在和尼克说话了。

他为世界上最大的
公司之一工作

,我已经在
努力让他感觉更好。

但他说,“不,Russ——
你可能不明白。

我们不仅有 Bing 搜索,

而且如果你使用 Internet Explorer
在 Google、

Yahoo、Bing 等任何网站上进行搜索……

然后,18 个月,我们保留 该数据
仅用于研究目的。”

我说:“现在你说话了!”

这是 Eric Horvitz,
我在微软的朋友。

所以我们做了一项研究

,我们定义了 50 个词

如果普通人患有高血糖症,他们可能会输入这些词,

比如“疲劳”、“食欲不振”、
“小便次数多”、“小便次数多”——请

原谅我 ,但这是
您可能会输入的内容之一。

所以我们有 50 个短语
,我们称之为“糖尿病词”。

我们首先做了一个基线。

事实证明
,互联网上大约 0.5% 到 1%

的搜索
涉及其中一个词。

这就是我们的基准利率。

如果人们输入“paroxetine”
或“Paxil”——这些是同义词——

其中一个词,

如果你已经
知道有“paroxetine”这个词,那么糖尿病类型词的比率会上升到大约 2%。

如果是“普伐他汀”,该比率会
从基线上升到大约 3%。

如果查询中同时出现“帕罗西汀”和“普伐他汀”

它会上升到 10%

,使用我们感兴趣

的两种药物

以及糖尿病类型词
或 高血糖类词。

我们发表了这篇文章,

并引起了一些关注。

值得关注的原因

是患者通过他们的搜索间接地告诉我们
他们的副作用

我们
提请了 FDA 的注意。

他们很感兴趣。

他们建立了社交媒体
监控程序

,与微软合作,微软

有一个很好的基础
设施来做这件事,以及其他人

,查看 Twitter 订阅源

,查看 Facebook 订阅源

,查看搜索日志,

试图看到早期迹象 药物,
无论是单独使用还是一起使用,

都会引起问题。

我能从中得到什么?
为什么要讲这个故事?

嗯,首先,

我们现在拥有
大数据和中型数据的承诺,

可以帮助我们了解药物相互作用,

以及真正从根本上了解药物作用。

药物是如何起作用的?

这将创建并创建
一个新的生态系统,

用于了解药物的工作原理
并优化其使用。

尼克接着说; 他
现在是哥伦比亚大学的教授。

他在博士学位期间
为数百对药物这样做了。

他发现了几个
非常重要的相互作用

,所以我们复制了这个

,我们证明了这
是一种真正适用

于发现药物-药物相互作用的方法。

但是,有几件事。

我们不只是一次使用成对
的药物。

正如我之前所说,有患者
服用三种、五种、七种、九种药物。

是否
对它们的九向交互进行了研究?

是的,我们可以成对进行,
A 和 B,A 和 C,A 和 D,

但是 A、B、C、
D、E、F、G 一起

被同一个病人服用,

也许与

以使它们
更有效或更不有效

或导致
意想不到的副作用的方式相互连接?

我们真的不知道。

这是一片蓝天,开放的领域
让我们可以使用数据

来尝试了解
药物的相互作用。

还有两个教训:

我想让你
想想我们能够

从那些
自愿

通过药剂师、
他们自己、他们的医生、斯坦福大学、哈佛

允许数据库的人那里获得不良反应的人的数据产生的力量
,范德比尔特

,用于研究。

人们担心数据。

他们担心自己的隐私
和安全——他们应该担心。

我们需要安全的系统。

但是我们不能有一个系统
来关闭这些数据,

因为它对于医学新事物来说太丰富了

灵感、创新和发现的来源

最后我想说的是,

在这种情况下,我们发现了两种药物
,这是一个有点悲伤的故事。

这两种药物实际上引起了问题。

他们增加了葡萄糖。

他们可能会将本来不会患糖尿病的人推向糖尿病

,因此您可能希望
非常小心地将这两种药物一起使用,

也许不一起使用,

在您开药时做出不同的选择。

但还有另一种可能。

我们本可以找到
两种或三种

以有益方式相互作用的药物。

我们本可以发现

它们都没有单独使用的药物的新作用,

但是它们结合在一起不会
引起副作用,

而是可以成为一种新的治疗方法,

用于治疗没有治疗方法

或治疗无效的疾病。

如果我们今天考虑药物治疗,

所有重大突破——

针对艾滋病毒、肺结核
、抑郁症、糖尿病

——总是药物的混合物。

所以这里的好处,

以及
在不同日子举行不同 TED 演讲的主题,

是我们如何使用相同的数据源

来发现
药物组合的良好效果,

这将为我们提供新的治疗方法,

对药物如何工作的新见解

和 让我们
更好地照顾我们的病人?

非常感谢你。

(掌声)