A new weapon in the fight against superbugs David Brenner

So … we’re in a real live war
at the moment,

and it’s a war that we’re truly losing.

It’s a war on superbugs.

So you might wonder,

if I’m going to talk about superbugs,

why I’m showing you a photograph
of some soccer fans –

Liverpool soccer fans
celebrating a famous victory

in Istanbul, a decade ago.

In the back, in the red shirt,

well, that’s me,

and next to me in the red hat,
that’s my friend Paul Rice.

So a couple of years
after this picture was taken,

Paul went into hospital
for some minor surgery,

and he developed
a superbug-related infection,

and he died.

And I was truly shocked.

He was a healthy guy in the prime of life.

So there and then,

and actually with a lot of encouragement
from a couple of TEDsters,

I declared my own
personal war on superbugs.

So let’s talk about superbugs
for a moment.

The story actually starts in the 1940s

with the widespread
introduction of antibiotics.

And since then,

drug-resistant bacteria
have continued to emerge,

and so we’ve been forced to develop
newer and newer drugs

to fight these new bacteria.

And this vicious cycle
actually is the origin of superbugs,

which is simply bacteria
for which we don’t have effective drugs.

I’m sure you’ll recognize
at least some of these superbugs.

These are the more
common ones around today.

Last year, around 700,000 people died

from superbug-related diseases.

Looking to the future,

if we carry on on the path we’re going,

which is basically a drugs-based
approach to the problem,

the best estimate
by the middle of this century

is that the worldwide death toll
from superbugs will be 10 million.

10 million.

Just to put that in context,
that’s actually more

than the number of people
that died of cancer worldwide last year.

So it seems pretty clear
that we’re not on a good road,

and the drugs-based approach
to this problem is not working.

I’m a physicist,

and so I wondered, could we take
a physics-based approach –

a different approach to this problem.

And in that context,

the first thing we know for sure,

is that we actually know how to kill
every kind of microbe,

every kind of virus,

every kind of bacteria.

And that’s with ultraviolet light.

We’ve actually known this
for more than 100 years.

I think you all know
what ultraviolet light is.

It’s part of a spectrum
that includes infrared,

it includes visible light,

and the short-wavelength part
of this group is ultraviolet light.

The key thing from our perspective here

is that ultraviolet light kills bacteria
by a completely different mechanism

from the way drugs kill bacteria.

So ultraviolet light is just as capable
of killing a drug-resistant bacteria

as any other bacteria,

and because ultraviolet light
is so good at killing all bugs,

it’s actually used a lot these days
to sterilize rooms,

sterilize working surfaces.

What you see here is a surgical theater

being sterilized with germicidal
ultraviolet light.

But what you don’t see
in this picture, actually,

is any people,

and there’s a very good reason for that.

Ultraviolet light
is actually a health hazard,

so it can damage cells in our skin,

cause skin cancer,

it can damage cells in our eye,

cause eye diseases like cataract.

So you can’t use conventional,
germicidal, ultraviolet light

when there are people are around.

And of course,

we want to sterilize mostly
when there are people around.

So the ideal ultraviolet light

would actually be able
to kill all bacteria,

including superbugs,

but would be safe for human exposure.

And actually that’s where my physics
background kicked into this story.

Together with my physics colleagues,

we realized there actually is a particular
wavelength of ultraviolet light

that should kill all bacteria,

but should be safe for human exposure.

That wavelength is called far-UVC light,

and it’s just the short-wavelength part
of the ultraviolet spectrum.

So let’s see how that would work.

What you’re seeing here
is the surface of our skin,

and I’m going to superimpose on that
some bacteria in the air above the skin.

Now we’re going to see what happens

when conventional, germicidal,
ultraviolet light impinges on this.

So what you see is,

as we know, germicidal light
is really good at killing bacteria,

but what you also see

is that it penetrates
into the upper layers of our skin,

and it can damage
those key cells in our skin

which ultimately, when damaged,
can lead to skin cancer.

So let’s compare now with far-UVC light –

same situation,

skin and some bacteria
in the air above them.

So what you’re seeing now

is that again, far-UVC light’s
perfectly fine at killing bacteria,

but what far-UVC light can’t do
is penetrate into our skin.

And there’s a good,
solid physics reason for that:

far-UVC light is incredibly, strongly
absorbed by all biological materials,

so it simply can’t go very far.

Now, viruses and bacteria
are really, really, really small,

so the far-UVC light can certainly
penetrate them and kill them,

but what it can’t do
is penetrate into skin,

and it can’t even penetrate
the dead-cell area

right at the very surface of our skin.

So far-UVC light
should be able to kill bacteria,

but kill them safely.

So that’s the theory.

It should work, should be safe.

What about in practice?

Does it really work?

Is it really safe?

So that’s actually what our lab
has been working on

the past five or six years,

and I’m delighted to say the answer
to both these questions

is an emphatic yes.

Yes, it does work,

but yes, it is safe.

So I’m delighted to say that,

but actually I’m not very
surprised to say that,

because it’s purely the laws
of physics at work.

So let’s look to the future.

I’m thrilled that we now have
a completely new weapon,

and I should say an inexpensive weapon,

in our fight against superbugs.

For example,

I see far-UVC lights in surgical theaters.

I see far-UVC lights
in food preparation areas.

And in terms of preventing
the spread of viruses,

I see far-UVC lights in schools,

preventing the spread of influenza,

preventing the spread of measles,

and I see far-UVC lights
in airports or airplanes,

preventing the global spread
of viruses like H1N1 virus.

So back to my friend Paul Rice.

He was actually a well-known
and well-loved local politician

in his and my hometown of Liverpool,

and they put up a statue in his memory
in the center of Liverpool,

and there it is.

But me,

I want Paul’s legacy to be a major advance
in this war against superbugs.

Armed with the power of light,

that’s actually within our grasp.

Thank you.

(Applause)

Chris Anderson: Stay up here, David,
I’ve got a question for you.

(Applause)

David, tell us where you’re up to
in developing this,

and what are the remaining obstacles
to trying to roll out

and realize this dream?

David Brenner: Well, I think we now know
that it kills all bacteria,

but we sort of knew
that before we started,

but we certainly tested that.

So we have to do lots and lots
of tests about safety,

and so it’s more about safety
than it is about efficacy.

And we need to do short-term tests,

and we need to do long-term tests

to make sure you can’t develop
melanoma many years on.

So those studies
are pretty well done at this point.

The FDA of course is something
we have to deal with,

and rightly so,

because we certainly can’t use this
in the real world without FDA approval.

CA: Are you trying
to launch first in the US,

or somewhere else?

DB: Actually, in a couple of countries.

In Japan and in the US, both.

CA: Have you been able to persuade
biologists, doctors,

that this is a safe approach?

DB: Well, as you can imagine,
there is a certain skepticism

because everybody knows
that UV light is not safe.

So when somebody comes along and says,

“Well, this particular UV light is safe,”

there is a barrier to be crossed,

but the data are there,

and I think that’s what
we’re going to be standing on.

CA: Well, we wish you well.

This is potentially such important work.

Thank you so much
for sharing this with us.

Thank you, David.

(Applause)

所以……我们现在正处于一场真正的实战中

,这是一场我们真正输掉的战争。

这是一场针对超级细菌的战争。

所以你可能想知道,

如果我要谈论超级细菌,

为什么我要给你看
一些足球迷的照片——

利物浦球迷

在十年前在伊斯坦布尔庆祝一场著名的胜利。

在后面,穿着红色衬衫,

嗯,那是

我,在我旁边戴着红帽子
的是我的朋友保罗·赖斯。

所以
在这张照片拍完几年后,

保罗去医院
做了一些小手术

,他
患上了与超级细菌相关的感染

,他死了。

我真的很震惊。

他是一个健康的人,正值壮年。

就这样,

在几个 TED 专家的大力鼓励下,

我宣布了我自己
对超级细菌的个人战争。

所以让我们暂时谈谈超级细菌

故事实际上始于 1940 年代抗生素

的广泛
引入。

从那时起,

耐药细菌
不断出现

,因此我们被迫开发
越来越新的药物

来对抗这些新细菌。

而这种恶性循环
实际上是超级细菌的起源,超级

细菌只是
我们没有有效药物的细菌。

我相信你
至少会认出其中一些超级细菌。

这些是当今比较
常见的。

去年,约有 70 万人死于

与超级细菌相关的疾病。

展望未来,

如果我们继续走我们正在走的道路,

这基本上是一种基于药物的
方法来解决这个问题,


本世纪中叶的最佳估计

是,全球超级细菌造成的死亡人数
将达到 1000 万 .

千万。

只是把它放在上下文中,
这实际上比

去年全球死于癌症的人数还要多。

所以很明显
,我们的道路并不好

,基于药物的方法
解决这个问题是行不通的。

我是物理学家

,所以我想知道,我们能否采用
基于物理学的方法——

一种不同的方法来解决这个问题。

在这种情况下

,我们首先确定的

是,我们实际上知道如何杀死
每一种微生物、

每一种病毒、

每一种细菌。

那是用紫外线。

我们实际上已经知道这一点
超过 100 年。

我想你们都
知道紫外线是什么。

它是包括红外线在内的光谱的一部分

它包括可见光,

而该组的短波长部分
是紫外线。

从我们的角度来看,关键

是紫外线杀死细菌
的机制

与药物杀死细菌的方式完全不同。

因此,紫外线

与任何其他细菌一样能够杀死耐药细菌,

而且由于紫外线
非常擅长杀死所有的虫子,

所以这些天它实际上被大量
用于对房间进行消毒,

对工作表面进行消毒。

你在这里看到的是一个

用紫外线杀菌消毒的手术室

但实际上,你在这张照片中看不到的

是任何人

,这是有充分理由的。

紫外线实际上是对健康的危害,

所以它会损害我们皮肤的细胞,

导致皮肤癌,

它会损害我们眼睛的细胞,

导致白内障等眼部疾病。

因此,当周围有人时,您不能使用常规、
杀菌、紫外线

当然,

我们主要是
在有人在的时候进行消毒。

因此,理想的

紫外线实际上
能够杀死所有细菌,

包括超级细菌,

但对人类来说是安全的。

实际上,这就是我的物理
背景对这个故事的影响。

与我的物理学同事一起,

我们意识到实际上存在一种特定
波长的

紫外线可以杀死所有细菌,

但对于人类暴露应该是安全的。

该波长称为远UVC光

,它只是紫外光谱的短波长
部分。

那么让我们看看它是如何工作的。

你在这里看到的
是我们的皮肤表面

,我将叠加在
皮肤上方空气中的一些细菌上。

现在我们将看看

当传统的杀菌
紫外线照射到它上面时会发生什么。

所以你看到的是,

正如我们所知,杀菌
光真的很擅长杀死细菌,

但你

也看到它会渗透
到我们皮肤的上层

,它会损害
我们皮肤中的那些关键细胞

,最终,当 受损,
可导致皮肤癌。

所以现在让我们与远紫外光进行比较——

同样的情况,

皮肤和
它们上方空气中的一些细菌。

所以你现在看到的

是,远紫外光
在杀死细菌方面非常好,

但远紫外光
不能穿透我们的皮肤。

这有一个很好的、
坚实的物理原因:

远紫外光令人难以置信地
被所有生物材料强烈吸收,

所以它根本不能走很远。

现在病毒和
细菌真的非常非常非常小,

所以远UVC光当然可以
穿透杀死它们,

但它
不能穿透皮肤,

甚至不能
穿透死细胞

位于我们皮肤表面的区域。

到目前为止,UVC 光
应该能够杀死细菌,

但可以安全地杀死它们。

这就是理论。

它应该工作,应该是安全的。

在实践中呢?

它真的有效吗?

真的安全吗?

所以这实际上是我们实验室

过去五六年一直在做的事情

,我很高兴地说
这两个

问题的答案都是肯定的。

是的,它确实有效,

但是是的,它是安全的。

所以我很高兴这样说,

但实际上我并不很
惊讶,

因为这纯粹
是物理定律在起作用。

所以让我们展望未来。

我很高兴我们现在拥有
了一种全新的武器

,我应该说是一种廉价的武器,

用于对抗超级细菌。

例如,

我在手术室看到远紫外线灯。


在食物准备区看到远紫外线灯。


防止病毒传播方面,

我在学校看到远紫外线灯,

防止流感传播,

防止麻疹传播

,我
在机场或飞机上看到远紫外线灯,

防止病毒在全球
传播,例如 H1N1病毒。

所以回到我的朋友保罗赖斯。 在他和我的家乡利物浦,

他实际上是一位知名
且深受喜爱的当地政治家

他们在利物浦市中心为他立了一座雕像,就

那里。

但我,

我希望保罗的遗产能
在这场对抗超级细菌的战争中取得重大进展。

有了光的力量,

这实际上就在我们的掌握之中。

谢谢你。

(掌声)

克里斯·安德森:大卫,待在这里,
我有一个问题要问你。

(掌声)

大卫,告诉我们你
在开发这个方面的进展情况,

以及
试图推出

和实现这个梦想的剩余障碍是什么?

大卫布伦纳:嗯,我想我们现在
知道它可以杀死所有细菌,


我们在开始之前就知道这一点,

但我们确实对此进行了测试。

所以我们必须做很多很多
关于安全性的测试

,所以更多的是关于安全性而
不是有效性。

我们需要进行短期测试

,我们需要进行长期测试

,以确保您
多年后不会患上黑色素瘤。

所以这些研究
在这一点上做得很好。

FDA 当然是
我们必须处理的事情

,这是正确的,

因为如果
没有 FDA 的批准,我们当然不能在现实世界中使用它。

CA:你是想
先在美国推出,

还是在其他地方推出?

DB:实际上,在几个国家。

在日本和美国,两者都有。

CA:你有没有说服
生物学家、医生

相信这是一种安全的方法?

DB:嗯,正如你可以想象的那样,
存在一定的怀疑,

因为每个人都
知道紫外线是不安全的。

所以当有人走过来说,

“嗯,这种特殊的紫外线是安全的”,

有一个障碍需要跨越,

但数据就在那里

,我认为这就是
我们要立足的地方。

CA:好吧,我们祝你好运。

这可能是一项非常重要的工作。

非常感谢您
与我们分享这个。

谢谢你,大卫。

(掌声)