Clara SousaSilva The fingerprints of life beyond Earth TED

It’s my job to find aliens,
so as you might guess,

I spent a lot of time thinking about them,

imagining little green women

meeting up with their friends,
commuting to work.

And that gets me thinking
about alien astronomers

trying to find us in their night sky.

If these alien astronomers
had looked in our direction

in the last century,

they would have been really excited
to detect unequivocal signs of technology.

But what if they looked
ten thousand years ago,

before we showed signs of civilization?

Would they shrug in disappointment
and go look elsewhere for life?

No, and neither should we.

Instead, we can look
for other signs of life.

For example, if those alien astronomers
had looked our way 10,000 years ago,

they might notice that even
without signs of civilization,

we still looked slightly unusual.

For one, we have
a thick and temperate atmosphere,

but more notably,

we have suspiciously large amounts
of oxygen in the atmosphere.

This would be a really encouraging
sign of life for my alien colleagues

because the composition
of the Earth’s atmosphere

can only sustain itself
through a biological cycle.

So can we do the same to them?

I’m certainly trying.

I am a quantum astrochemist,

which means I study
the quantum interactions

between molecules and light in space.

We can’t see these molecules
or even the planets they’re on.

But when life from a star
goes through an alien atmosphere,

each molecule within it
leaves a unique fingerprint

in the starlight that I can see from here.

And I look for the fingerprints

of molecules that could
be associated with life,

or biosignatures,

like complex pollutants or oxygen.

In the context of Earth,
oxygen is a wonderful biosignature,

but oxygen is not that hard to make.

So, for example, if our sun
had different levels of radiation

or if our oceans were evaporating
from a runaway greenhouse effect,

then large amounts of oxygen
could accumulate in our atmosphere

without biology,

and then oxygen would be
a false positive for life.

So maybe oxygen won’t be the solution
to finding life beyond Earth,

but then what is?

Well, my specialty
is to look for unusual molecules

that have fewer false positives for life

because they’re so difficult to make
that they’re rarely made spontaneously.

And my favorite of those
unusual molecules is phosphine.

When I first started working on phosphine
about a decade ago,

people had a hard time
thinking of it as a biosignature at all.

Instead, it was known

for being this horrific,
foul-smelling molecule

that messes with life’s
ability to use oxygen,

making it a really effective killer.

Because of this fatal interaction
with oxygen metabolism,

phosphine is used widely as a pesticide

and sadly for the same reason it was used
many times in chemical warfare.

Phosphine can be made in the lab,

and it’s also produced
in the extreme environments

found inside gas giants
like Jupiter and Saturn.

But on rocky planets like the Earth,
it is rarely created accidentally.

So we don’t really expect
to find phosphine on Earth at all.

And yet we do.

We find it in small amounts
throughout the globe,

and in some places
in strangely large quantities,

places like swamps
and rice fields and lake beds

and the excrements and guts
of most animals.

And what all of these
ecosystems have in common

is that they all host organisms
that are not reliant on oxygen,

so phosphine can’t hurt them.

Indeed, phosphine seems to be safely
and enthusiastically produced

in all of these oxygen-poor ecosystems.

So I figured, maybe other planets
with life less reliant on oxygen than ours

could also have phosphine,
but as a really popular biosignature.

And here’s the best thing about phosphine.

Because it’s so hard to make
on rocky planets like the Earth,

it has almost no false positives for life.

So I started considering
what telescopes we would need

to detect phosphine on planets
in our galactic neighborhood.

Because if we did,
I predicted it could only mean life.

I was imagining a distant planet,

a oxygen-poor tropical paradise

with a phosphine-rich biosphere
that we might one day be able to detect.

But turns out phosphine
was a little more exciting

than I had initially envisaged

because a few months
after I finished this work

an astronomer, Jane Greaves,
reached out to me

asking for help with interpreting
a telescope signal seen here in white.

Then months later,
another signal, seen here in orange,

that seemed to indicate that phosphine
might be present not on a distant planet,

but right next door,
on the clouds of Venus.

So did we do it?

Did we find life beyond Earth?
We don’t know.

These Venus observations
were noisy and preliminary,

so we still need to confirm,
without a doubt,

that the signal is real,

and if it is, we need to make sure

it’s not another molecule
mimicking phosphine’s fingerprint.

And if it is unambiguously phosphine,

we still need to figure out
what or who is making it,

because maybe it’s true

that life is the best explanation
for the presence of phosphine

on a planet like Venus.

But maybe that’s wrong

and there’s an exotic but not biological
way of making phosphine

that no one has thought of yet.

Either way, as much as I love phosphine,

I don’t think that’s how we’ll find life.

The detection of life will likely
not come from a single molecule.

No matter how special it is.

We’ll have to detect a whole biosphere
producing a complex network of gases

that together form a message
that reads: “We’re alive!”

As the Venus story shows,

the detection of life
will likely be uncertain,

but Venus is the perfect lab for us
to test our theories of biospheres

and how to interpret them.

If we learn to understand
the atmosphere of Venus

and the message it contains,

then we can find out if we got it right
by going there and checking.

And we’ll do that
at the end of the decade.

But this will not be the last time

that we have the discovery
of a biosignature

on a potentially habitable planet,

and next time we won’t be able
to just go there and check.

So my biggest concern

is not that we will fail to find
a habitable planet in our lifetimes.

My biggest concern is that we’ll point
our very expensive telescopes

directly at an inhabited planet

and just not know we did it.

But I am determined to not miss life.

So, yes, I will look for the unambiguous
but quite unlikely signs of technology

like complex pollutants.

And I’ll look for
the pleasant and familiar

but potentially misleading
signs of life, like oxygen.

And of course, I’ll keep looking

for the strange and scary
biosignatures like phosphine.

But crucially, I will look
for all the molecules

that can together paint
a holistic picture of a biosphere.

All of this so that one day
we’ll know life when we see it.

Thank you.

寻找外星人是我的工作,
所以你可能猜到了,

我花了很多时间思考他们,

想象小绿女人

与她们的朋友见面,
通勤上班。

这让我想到
了外星天文学家

试图在他们的夜空中找到我们。

如果这些外星天文学家
在上个世纪朝我们的方向看

他们会非常兴奋
地发现明确的技术迹象。

但是,如果它们看起来在
一万年前,

在我们出现文明迹象之前呢?

他们会失望地耸耸肩
,去别处寻找生活吗?

不,我们也不应该。

相反,我们可以
寻找其他生命迹象。

例如,如果那些外星天文学家
在一万年前看过我们的方向,

他们可能会注意到,即使
没有文明的迹象,

我们看起来仍然有些不寻常。

一方面,我们
有厚厚而温和的大气层,

但更值得注意的是,

我们
的大气层中含有大量可疑的氧气。 对于我的外星同事来说,

这将是一个非常令人鼓舞
的生命迹象,

因为
地球大气的成分

只能
通过一个生物循环来维持自身。

那么我们可以对他们做同样的事情吗?

我当然在努力。

我是一名量子天体化学家,

这意味着我研究

空间中分子与光之间的量子相互作用。

我们看不到这些分子
,甚至看不到它们所在的行星。

但是当一颗恒星的生命
穿过外星大气层时,其中的

每个分子都会在星光中
留下一个独特的指纹

,我可以从这里看到。

我寻找

可能与生命

或生物特征相关的分子指纹,

如复杂的污染物或氧气。

在地球的背景下,
氧气是一种奇妙的生物特征,

但氧气并不难制造。

因此,例如,如果我们的太阳
有不同水平的辐射,

或者如果我们的海洋
因失控的温室效应而蒸发,

那么大量的氧气
可能会在没有生物的情况下在我们的大气中积累

然后氧气就会
成为生命的假阳性。

所以也许氧气不会成为
寻找地球以外生命的解决方案,

但那是什么呢?

嗯,我的专长

寻找生命中误报较少的不寻常分子,

因为
它们很难制造,很少自发制造。

我最喜欢的那些
不寻常的分子是磷化氢。 大约十年前,

当我第一次开始研究磷化氢时

人们很难
将其视为一种生物特征。

相反,它

以这种可怕的、
恶臭的分子

而闻名,它扰乱了生命
使用氧气的能力,

使其成为真正有效的杀手。

由于这种
与氧代谢的致命相互作用,

磷化氢被广泛用作杀虫剂

,可悲的是,出于同样的原因,它
在化学战中被多次使用。

磷化氢可以在实验室制造

,也可以

木星和土星等气态巨行星内部的极端环境中制造。

但是在像地球这样的岩石行星上,
它很少是偶然产生的。

所以我们根本不希望
在地球上找到磷化氢。

然而我们做到了。

我们
在全球范围内发现少量

,在一些
地方发现数量惊人,

例如沼泽
、稻田、湖床

以及大多数动物的排泄物和
内脏。

所有这些
生态系统的共同点

是它们都宿主
不依赖氧气的生物,

因此磷化氢不会伤害它们。

事实上,磷化氢似乎是

在所有这些缺氧生态系统中安全而热情地生产的。

所以我想,也许
其他生命对氧气的依赖程度低于我们的行星

也可能含有磷化氢,
但它是一种非常受欢迎的生物特征。

这是关于磷化氢的最好的事情。

因为
在地球这样的岩石行星上很难制造,

所以它几乎没有对生命的误报。

所以我开始考虑
我们需要什么望远镜

来探测
我们银河系附近行星上的磷化氢。

因为如果我们这样做了,
我预测它只能意味着生命。

我在想象一个遥远的星球,

一个缺氧的热带天堂,

有一个富含磷化氢的生物圈
,我们有朝一日可能能够探测到。

但事实证明,磷化氢比我
最初设想的更令人兴奋,

因为
在我完成这项工作几个月后

,一位天文学家简·格里夫斯(Jane Greaves)
向我

寻求帮助,以解释
在这里看到的白色望远镜信号。

几个月后,
这里以橙色显示的另一个信号

似乎表明磷化氢
可能不在遥远的行星上,

而是在隔壁
的金星云层上。

那么我们做到了吗?

我们发现地球以外的生命了吗?
我们不知道。

这些金星观测
是嘈杂和初步的,

所以我们仍然需要
毫无疑问地

确认信号是真实的

,如果是,我们需要确保

它不是另一个
模仿膦指纹的分子。

如果它明确地是磷化氢,

我们仍然需要弄清楚是
什么或谁在制造它,

因为也许

生命是对

金星这样的行星上存在磷化氢的最佳解释。

但也许这是错误的

,有一种奇异的但不是
生物的制造磷化氢的方法

,目前还没有人想到。

不管怎样,尽管我很喜欢磷化氢,但

我不认为这就是我们找到生活的方式。

生命的探测可能
不会来自单个分子。

不管它有多特别。

我们必须探测到整个生物圈
产生一个复杂的气体网络,这些

气体共同形成一条信息
,上面写着:“我们还活着!”

正如金星的故事所示,

生命的探测
可能是不确定的,

但金星是
我们测试生物圈理论

以及如何解释它们的完美实验室。

如果我们学会理解
金星的大气层

和它所包含的信息,

那么我们可以通过去那里检查来确定我们是否正确

我们将
在本世纪末做到这一点。

但这不会是我们最后一次

在潜在的宜居星球上发现生物特征

,下一次我们也
不能只去那里检查。

所以我最担心

的不是
我们有生之年找不到适合居住的星球。

我最担心的是,我们会将
我们非常昂贵的望远镜

直接指向一个有人居住的星球

,只是不知道我们做到了。

但我决心不要错过生活。

所以,是的,我会寻找明确
但不太可能出现的技术迹象,

比如复杂的污染物。

我会寻找
令人愉快和熟悉

但可能具有误导性
的生命迹象,比如氧气。

当然,我会继续

寻找像磷化氢这样奇怪而可怕的
生物特征。

但至关重要的是,我将寻找

所有可以共同
描绘生物圈整体图景的分子。

所有这一切都是为了有一天
我们会在看到生活时了解它。

谢谢你。