Cloudy climate change How clouds affect Earths temperature Jasper Kirkby

Cloudy climate change:
How clouds affect Earth’s temperature.

Earth’s average surface temperature
has warmed by .8 Celsius since 1750.

When carbon dioxide concentrations
in the atmosphere have doubled,

which is expected before the end
of the 21st century,

researchers project global temperatures

will have risen by
1.5 to 4.5 degrees Celsius.

If the increase is near the low end,
1.5 Celsius,

then we’re already halfway there,
and we should be more able to adapt

with some regions becoming drier
and less productive,

but others becoming warmer,
wetter and more productive.

On the other hand, a rise of 4.5 degrees
Celsius would be similar in magnitude

to the warming that’s occurred since
the last glacial maximum 22,000 years ago,

when most of North America was under
an ice sheet two kilometers thick.

So that would represent a
dramatic change of climate.

So it’s vitally important for scientists
to predict the change in temperature

with as much precision as possible
so that society can plan for the future.

The present range of uncertainty
is simply too large

to be confident of how best
to respond to climate change.

But this estimate of 1.5 to 4.5 Celsius
for a doubling of carbon dioxide

hasn’t changed in 35 years.

Why haven’t we been able
to narrow it down?

The answer is that we don’t yet understand
aerosols and clouds well enough.

But a new experiment at CERN
is tackling the problem.

In order to predict how
the temperature will change,

scientists need to know something
called Earth’s climate sensitivity,

the temperature change in response
to a radiative forcing.

A radiative forcing is
a temporary imbalance

between the energy received from the Sun
and the energy radiated back out to space,

like the imbalance caused by an
increase of greenhouse gases.

To correct the imbalance,
Earth warms up or cools down.

We can determine Earth’s
climate sensitivity

from the experiment that we’ve already

performed in the industrial age
since 1750

and then use this number to determine
how much more it will warm

for various projected radiative forcings
in the 21st century.

To do this, we need to know
two things:

First, the global temperature rise
since 1750,

and second, the radiative forcing
of the present day climate

relative to the pre-industrial climate.

For the radiative forcings,
we know that human activities

have increased greenhouse gases
in the atmosphere,

which have warmed the planet.

But our activities have at the same time
increased the amount

of aerosol particles in clouds,
which have cooled the planet.

Pre-industrial greenhouse gas
concentrations are well measured

from bubbles trapped in ice cores
obtained in Greenland and Antarctica.

So the greenhouse gas forcings
are precisely known.

But we have no way of directly measuring
how cloudy it was in 1750.

And that’s the main source of uncertainty
in Earth’s climate sensitivity.

To understand pre-industrial cloudiness,

we must use computer models
that reliably simulate

the processes responsible for
forming aerosols in clouds.

Now to most people, aerosols are the thing
that make your hair stick,

but that’s only one type of aerosol.

Atmospheric aerosols are tiny liquid
or solid particles suspended in the air.

They are either primary,

from dust, sea spray salt
or burning biomass,

or secondary, formed by gas to
particle conversion in the atmosphere,

also known as particle nucleation.

Aerosols are everywhere in the atmosphere,

and they can block out the sun
in polluted urban environments,

or bathe distant mountains in a blue haze.

More importantly, a cloud droplet cannot
form without an aerosol particle seed.

So without aerosol particles,
there’d be no clouds,

and without clouds,
there’d be no fresh water.

The climate would be much hotter,
and there would be no life.

So we owe our existence
to aerosol particles.

However, despite their importance,

how aerosol particles form
in the atmosphere

and their effect on clouds
are poorly understood.

Even the vapors responsible
for aerosol particle formation

are not well established

because they’re present in only
minute amounts,

near one molecule per million million
molecules of air.

This lack of understanding
is the main reason

for the large uncertainty
in climate sensitivity,

and the corresponding wide range
of future climate projections.

However, an experiment underway at CERN,
named, perhaps unsurprisingly, “Cloud”

has managed to build a steel vessel
that’s large enough

and has a low enough contamination,
that aerosol formation can,

for the first time, be measured under
tightly controlled atmospheric conditions

in the laboratory.

In its first five years of operation,
Cloud has identified the vapors

responsible for aerosol particle
formation in the atmosphere,

which include sulfuric acid,
ammonia, amines,

and biogenic vapors from trees.

Using an ionizing particle beam
from the CERN proton synchrotron,

Cloud is also investigating
if galactic cosmic rays

enhance the formation of
aerosols in clouds.

This has been suggested as a possible
unaccounted natural climate forcing agent

since the flux of cosmic rays raining
down on the atmosphere

varies with solar activity.

So Cloud is addressing two big questions:

Firstly, how cloudy was the
pre-industrial climate?

And, hence, how much have
clouds changed due to human activities?

That knowledge will help sharpen
climate projections in the 21st century.

And secondly, could the puzzling
observations of solar climate variability

in the pre-industrial climate be explained
by an influence

of galactic cosmic rays on clouds?

Ambitious but realistic goals
when your head’s in the clouds.

多云的气候变化:
云如何影响地球的温度。

自 1750 年以来,地球的平均表面温度已经升高了 0.8 摄氏度。

当大气中的二氧化碳浓度
翻倍

时(预计在
21 世纪末之前),

研究人员预计全球气温

将上升
1.5 到 4.5 摄氏度。

如果增幅接近 1.5 摄氏度的低端,

那么我们已经到了一半
,我们应该能够更好地

适应一些地区变得更干燥
和生产力降低,

但其他地区变得更温暖、
更潮湿和更有生产力。

另一方面,上升 4.5
摄氏度的幅度

与自
22,000 年前最后一次冰川最大值以来发生的变暖幅度相似,

当时北美大部分地区位于
两公里厚的冰盖之下。

因此,这将代表
气候的剧烈变化。

因此,对于科学家来说,尽可能精确
地预测温度变化至关重要,

这样社会才能为未来做计划。

目前的不确定性
范围太大

,无法确定如何最好
地应对气候变化。

但是,对于二氧化碳翻一番的 1.5 到 4.5 摄氏度的估计,

35 年来没有改变。

为什么我们
无法缩小范围?

答案是我们对
气溶胶和云的了解还不够好。

但欧洲核子研究中心的一项新实验
正在解决这个问题。

为了预测
温度将如何变化,

科学家们需要知道
地球的气候敏感性,


对辐射强迫的温度变化。

辐射强迫是

从太阳接收
到的能量与辐射回太空的能量之间的暂时不平衡,

就像温室气体增加引起的不平衡一样

为了纠正这种不平衡,
地球会变暖或变冷。

我们可以

从自 1750 年以来我们在工业时代已经进行的实验中确定地球的气候敏感性

,然后使用这个数字来确定在 21 世纪

各种预计的辐射强迫下地球会变暖多少

为此,我们需要知道
两件事:

第一,
自 1750 年以来全球气温上升

,第二,
当前气候

相对于工业化前气候的辐射强迫。

对于辐射强迫,
我们知道人类

活动增加
了大气中的温室气体,

从而使地球变暖。

但我们的活动同时
增加了

云中气溶胶粒子的数量,
从而使地球降温。


格陵兰岛和南极洲获得的冰芯中捕获的气泡可以很好地测量工业化前的温室气体浓度。

因此,温室气体强迫
是精确已知的。

但我们无法直接测量
1750 年的多云情况。

这是地球气候敏感性不确定性的主要来源

要了解工业化前的云量,

我们必须使用计算机模型
来可靠地模拟

负责
在云中形成气溶胶的过程。

现在对大多数人来说,气溶胶是
让你的头发粘起来的东西,

但这只是气溶胶的一种。

大气气溶胶是悬浮在空气中的微小液体
或固体颗粒。

它们要么是初级的,

来自灰尘、海喷雾盐
或燃烧的生物质,

要么是次级的,由
大气中的气体转化为粒子形成,

也称为粒子成核。

气溶胶在大气中无处不在

,它们可以
在被污染的城市环境中遮挡阳光,

或者将远处的山脉沐浴在蓝色的薄雾中。

更重要的是,
没有气溶胶粒子种子就无法形成云滴。

所以没有气溶胶粒子
就没有云

,没有云
就没有淡水。

气候会更热
,不会有生命。

所以我们的存在
归功于气溶胶粒子。

然而,尽管它们很重要,但人们对

气溶胶粒子如何
在大气中形成

以及它们对云的影响
知之甚少。

甚至
导致气溶胶颗粒形成的蒸汽

也没有得到很好的证实,

因为它们的
含量很少,

接近百万分之一
的空气分子。

这种缺乏了解
是气候敏感性

存在很大不确定性

以及相应
的未来气候预测范围广泛的主要原因。

然而,欧洲核子研究中心正在进行的一项
名为“云”的实验

成功地建造了一个
足够大

且污染足够低的钢制容器,

首次可以在
严格控制的大气条件下测量气溶胶的形成

在实验室。

在其运营的前五年,
Cloud 已经确定了

导致大气中气溶胶颗粒
形成的蒸汽,

其中包括硫酸、
氨、胺

和来自树木的生物蒸汽。

使用
来自欧洲核子研究中心质子同步加速器的电离粒子束,

克劳德还在
研究银河宇宙射线是否会

增强
云中气溶胶的形成。

这被认为是一种可能
无法解释的自然气候强迫因子,

因为降落在大气中的宇宙射线通量

随太阳活动而变化。

所以云解决了两个大问题:

首先,
工业化前的气候有多云?

因此,
由于人类活动,云层发生了多少变化?

这些知识将有助于加强
对 21 世纪的气候预测。

其次,能否用银河宇宙射线对云层的影响

来解释对前工业化气候中太阳气候变化的令人费解的观察

当你的头脑在云端时,雄心勃勃但现实的目标。