Earths mysterious red glow explained Zoe Pierrat

In 2009, a satellite circled Earth,

methodically scanning and sorting
the wavelengths

reflecting off the planet’s surface.

Researchers were looking for the spectral
signature of carbon dioxide

when they noticed something baffling:

an unexpected wavelength
of unknown origin.

They tried looking at Earth
with only this wavelength,

and saw the planet covered
in a red hue of varying intensity.

This couldn’t have been reflected sunlight

because it was a wavelength that never
escapes the Sun’s outer atmosphere.

And it didn’t correspond
with densely populated areas,

suggesting it wasn’t human-made either.

In fact, it was emanating
from places with lots of plants:

the Amazon basin,
northern evergreen forests,

and croplands of the Midwestern US
were all ablaze.

So, what was going on?

Plants and other organisms use light
to grow by way of photosynthesis.

But that’s just one of three
ways that light

entering a photosynthetic organism
is used.

And this is the key to solving
the mystery.

To understand the others,
we need to begin with photosynthesis.

During this process,

sunlight hits structures within a plant’s
cells called chloroplasts,

which are packed
with chlorophyll pigments.

When chlorophyll molecules absorb light,
some of their electrons become excited.

They go through a series of reactions,

which transform light energy
into chemical energy.

This powers the conversion of carbon
dioxide and water into glucose,

the simple sugar plants need to grow.

And of course, this reaction generates
an important byproduct.

Photosynthesis—

which is constantly being carried
out by plants, algae, and bacteria—

produces all of Earth’s oxygen.

But plants regularly absorb more light
than they’re able to consume.

For instance, over winter,

the frozen leaves of evergreen trees can’t
photosynthesize at their usual rate,

but they’re still exposed
to a lot of sunlight.

If not dealt with, the excess light can
damage their photosynthetic machinery.

So, the second way plants use light
is by transforming it into heat

and dissipating it out of their leaves.

The third way plants interact
with incoming light

is by radiating it back out
at a different wavelength,

producing what’s called
chlorophyll fluorescence.

During photosynthesis,
the chlorophyll’s excited electrons

move through that series
of chemical reactions.

But as some of the excited electrons
fall back to their ground states,

they emit energy as light.

Overall, about 1% of the light
absorbed is re-emitted

as wavelengths at the red
end of the spectrum.

It’s such a small amount that you
can’t see it with the naked eye.

But plants the world over are fluorescing
as they photosynthesize.

And this is what’s caused
the Earth’s baffling red glow,

as observed by satellite.

It was an accidental discovery,
but a huge breakthrough.

Tracking chlorophyll fluorescence
from space

allows us to watch the planet breathe
in real time—

and monitor the health
of ecosystems worldwide.

Previously, researchers used levels
of greenness

as the main estimate for plant health.

Because plants generally change colors
or lose foliage when they’re stressed,

higher levels of green typically
indicate healthier plants.

But this measure can be unreliable.

In contrast, chlorophyll fluorescence
is a direct measure

of photosynthetic activity.

It can help us infer how much
oxygen is being released

and how much carbon is being absorbed
in a given system.

Drops in chlorophyll fluorescence
may also occur

before visible signs of plant stress,
making it a timely measure.

Scientists have already used chlorophyll
fluorescence to monitor

harmful phytoplankton blooms,

and track the effects of drought
in the Amazon and Great Plains.

Going forward, we’ll be investigating
photosynthesis from space,

and gauging how best to support
our silent friends,

who already do so much for us.

2009 年,一颗卫星环绕地球,

有条不紊地扫描和分类

从地球表面反射的波长。

研究人员在寻找二氧化碳的光谱
特征

时发现了一些令人费解的东西:

未知来源的意外
波长。

他们尝试
只用这个波长观察地球

,发现地球
被不同强度的红色色调所覆盖。

这不可能是反射的阳光,

因为它是一种永远不会
逃离太阳外层大气的波长。

而且它
与人口稠密的地区不对应,

这表明它也不是人造的。

事实上,它是
从有很多植物的地方散发出来的

:亚马逊盆地、
北部常绿森林

和美国中西部的农田都在
燃烧。

那么,到底发生了什么?

植物和其他生物
通过光合作用利用光来生长。

但这只是

进入光合生物
的三种使用方式之一。

而这正是解开谜团的关键

要了解其他人,
我们需要从光合作用开始。

在此过程中,

阳光照射植物细胞内的结构,
称为叶绿体,叶绿体


富含叶绿素色素。

当叶绿素分子吸收光时,
它们的一些电子会被激发。

它们经过一系列反应,

将光能
转化为化学能。

这为
二氧化碳和水转化为葡萄糖提供

了动力,葡萄糖是单糖植物生长所需要的。

当然,这种反应会产生
一种重要的副产品。

光合作用——

植物、藻类和细菌不断进行——

产生地球上所有的氧气。

但是植物经常吸收
比它们能够消耗的更多的光。

例如,在冬季,

常绿树木的冻叶无法
以通常的速度进行光合作用,

但它们仍然暴露
在大量阳光下。

如果不处理,多余的光会
损坏它们的光合作用机制。

因此,植物利用光的第二种方式
是将其转化为热量

并将其从叶子中散发出去。

植物与入射光相互作用的第三种方式

是以不同的波长将其辐射回来

产生所谓的
叶绿素荧光。

在光合作用过程中
,叶绿素的激发电子

会通过
一系列化学反应。

但是当一些被激发的电子
回落到它们的基态时,

它们会以光的形式发射能量。

总体而言,大约 1% 的
吸收光

作为光谱红
端的波长重新发射。

它是如此之少,以至于您
无法用肉眼看到它。

但是世界各地的植物
在进行光合作用时都会发出荧光。

正如卫星观测到的,这就是
导致地球发出令人费解的红光的原因

这是一个偶然的发现,
但却是一个巨大的突破。 从太空

追踪叶绿素荧光

使我们能够实时观察地球的呼吸
情况,

并监测
全球生态系统的健康状况。

以前,研究人员使用
绿色程度

作为植物健康的主要估计值。

由于植物
在受到压力时通常会改变颜色或失去叶子,因此

较高水平的绿色通常
表明植物更健康。

但这种措施可能不可靠。

相比之下,叶绿素荧光
是光合活性的直接量度

它可以帮助我们推断给定系统
中释放了多少氧气

以及吸收了多少碳

叶绿素荧光的下降
也可能发生

在植物胁迫的明显迹象之前,
使其成为及时的措施。

科学家们已经使用叶绿素
荧光来监测

有害的浮游植物大量繁殖,

并追踪
亚马逊和大平原干旱的影响。

展望未来,我们
将从太空研究光合作用,

并衡量如何最好地支持
我们沉默的朋友,

他们已经为我们做了很多。