How far would you have to go to escape gravity Rene Laufer

More than six thousand light years

from the surface of the earth,

a rapidly spinning neutron star

called the Black Widow pulsar

blasts its companion brown dwarf
star with radiation

as the two orbit each other
every 9 hours.

Standing on our own planet,

you might think you’re just an observer
of this violent ballet.

But in fact, both stars are pulling you
towards them.

And you’re pulling back,

connected across trillions of kilometers

by gravity.

Gravity is the attractive force
between two objects with mass—

any two objects with mass.

Which means that every object in the
universe attracts every other object:

every star, black hole,

human being, smartphone, and atom

are all constantly pulling on each other.

So why don’t we feel pulled in billions
of different directions?

Two reasons: mass and distance.

The original equation describing the
gravitational force between two objects

was written by Isaac Newton in 1687.

Scientists’ understanding of gravity has
evolved since then,

but Newton’s Law of Universal Gravitation

is still a good approximation
in most situations.

It goes like this:

the gravitational force between two
objects

is equal to the mass of one

times the mass of the other,

multiplied by a very small number

called the gravitational constant,

and divided by the distance between them,
squared.

If you doubled the mass of one of
the objects,

the force between them would double, too.

If the distance between them doubled,

the force would be one-fourth as strong.

The gravitational force between you and
the Earth pulls you towards its center,

a force you experience as your weight.

Let’s say this force is about 800 Newtons

when you’re standing at sea level.

If you traveled to the Dead Sea,

the force would increase by a tiny
fraction of a percent.

And if you climbed to the top of Mount
Everest, the force would decrease—

but again, by a minuscule amount.

Traveling higher would make a bigger dent
in gravity’s influence,

but you won’t escape it.

Gravity is generated by variations
in the curvature of spacetime—

the three dimensions of space plus time—

which bend around any object
that has mass.

Gravity from Earth reaches the
International Space Station,

400 kilometers above the earth,

with almost its original intensity.

If the space station was stationary
on top of a giant column,

you’d still experience ninety percent

of the gravitational force there
that you do on the ground.

Astronauts just experience weightlessness

because the space station is constantly
falling towards earth.

Fortunately, it’s orbiting the planet
fast enough that it never hits the ground.

By the time you made it to
the surface of the moon,

around 400,000 kilometers away,

Earth’s gravitational pull would be

less than 0.03 percent of
what you feel on earth.

The only gravity you’d be aware of
would be the moon’s,

which is about one sixth as strong
as the earth’s.

Travel farther still

and Earth’s gravitational pull on you
will continue to decrease,

but never drop to zero.

Even safely tethered to the Earth,

we’re subject to the faint tug of distant
celestial bodies and nearby earthly ones.

The Sun exerts a force of about
half a Newton on you.

If you’re a few meters away from a
smartphone, you’ll experience

a mutual force of a few piconewtons.

That’s about the same as the
gravitational pull

between you and the Andromeda Galaxy,

which is 2.5 million light years away

but about a trillion times as massive
as the sun.

But when it comes to escaping gravity,

there’s a loophole.

If all the mass around us is
pulling on us all the time,

how would Earth’s gravity change

if you tunneled deep below the surface,

assuming you could do so without being
cooked or crushed?

If you hollowed out the center
of a perfectly spherical Earth—

which it isn’t, but let’s just say it
were—

you’d experience an identical pull from
all sides.

And you’d be suspended, weightless,

only encountering the tiny pulls
from other celestial bodies.

So you could escape the Earth’s gravity
in such a thought experiment—

but only by heading straight into it.

距地球表面 6000 多光年的地方,

一颗快速旋转的中子星

被称为黑寡妇脉冲星,

它的伴星褐矮星每 9 小时会相互绕行一次,并用辐射爆破它的伴星褐矮

站在我们自己的星球上,

你可能会认为自己只是
这部暴力芭蕾的旁观者。

但事实上,两颗星星都在把你拉
向他们。

而你正在后退,通过重力

连接了数万亿公里

引力
是两个有质量的

物体——任何两个有质量的物体——之间的吸引力。

这意味着宇宙中的每一个物体
都会吸引其他所有物体:

每颗恒星、黑洞、

人类、智能手机和原子

都在不断地相互拉扯。

那么,为什么我们不觉得被拉向了数十亿
个不同的方向呢?

两个原因:质量和距离。

描述
两个物体之间引力的原始方程

是由艾萨克·牛顿在 1687 年编写的。从那时起,

科学家们对引力的理解不断
发展,

但在大多数情况下,牛顿万有引力

定律仍然是一个很好的近似值

它是这样的:

两个物体之间的引力

等于一个

质量乘以另一个质量,

乘以一个非常小的数字,

称为引力常数,

然后除以它们之间的距离,
平方。

如果你将其中一个物体的质量加倍

它们之间的力也会加倍。

如果它们之间的距离增加一倍,

那么力量将是原来的四分之一。

你和地球之间的万有引力
将你拉向它的中心,

你体验到的力就像你的体重。

假设

当你站在海平面上时,这个力大约是 800 牛顿。

如果你前往死海

,力量会增加百分之一的一小
部分。

如果你爬到珠穆朗玛峰的顶部
,力量会减少——

但同样是微不足道的。

走得更高会大大
削弱重力的影响,

但你无法逃脱它。

引力是由
时空曲率的变化产生的

——空间和时间的三个维度——

它围绕
任何有质量的物体弯曲。

来自地球的重力以几乎原始强度到达距离地球 400 公里的
国际空间站

如果空间站静止
在一根巨大的柱子顶部,

你仍然会感受到那里 90%

的引力,
就像你在地面上所做的那样。

宇航员只是经历失重,

因为空间站不断
向地球坠落。

幸运的是,它绕行星运行的
速度足够快,从未撞到地面。

当你到达大约 400,000 公里外
的月球表面时,

地球的引力将

不到
你在地球上感受到的 0.03%。

你唯一知道的重力
是月球的重力,

它的强度大约是地球的六分之一

走得更远

,地球对你的引力
将继续减少,

但绝不会降至零。

即使安全地拴在地球上,

我们也会受到遥远
天体和附近地球天体的微弱牵引。

太阳对你施加大约
半牛顿的力。

如果你离
智能手机几米远,你会体验

到几皮克牛顿的相互力量。

与你和仙女座星系之间的引力大致相同,仙女座星系

距离我们 250 万光年,

但质量约为太阳的一万亿倍

但是,在逃避重力方面,

有一个漏洞。

如果我们周围的所有物质一直在
拉着我们,

如果你在地表以下深处挖隧道,

假设你可以在不被
煮熟或压碎的情况下这样做,地球的重力会如何变化?

如果你挖空
了一个完美的球形地球的中心——

它不是,但我们只是说它是
——

你会感受到来自四面八方的相同的拉力

你会被悬浮,失重,

只会遇到
来自其他天体的微小拉力。

所以你可以
在这样的思想实验中摆脱地球的引力——

但只能直接进入地球。